10
Braz Dent Sci 2023 Apr/Jun;26 (2): e3721
Molena KF et al.
Silver nanoparticles in mouthw ashes against infection caused by SARS-CoV -2: a scoping review
Molena KF et al.
Silver nanoparticles in mouthwashes against infection caused
by SARS-CoV-2: a scoping review
2020;15:3207-15. http://dx.doi.org/10.2147/IJN.S243202.
PMid:32440119.
31. Molina GF, Cabalén MB, Aranguren JP, Palma SD, Pino GA,
Burrow MF. Color changes and shear bond strength to
simulated caries lesions treated with a novel solution of
20% silver nanoclusters in polymethacrylic acid. Sci Rep.
2022;12(1):15418. http://dx.doi.org/10.1038/s41598-022-
19757-6. PMid:36104473.
32. Yin IX, Yu OY, Zhao IS, Mei ML, Li QL, Tang J,etal. Developing
biocompatible silver nanoparticles using epigallocatechin
gallate for dental use. Arch Oral Biol. 2019;102:106-12.
http://dx.doi.org/10.1016/j.archoralbio.2019.03.022.
PMid:30999064.
33. Dias HB, Bernardi MIB, Marangoni VS, Bernardi ACA, Rastelli ANS,
Hernandes AC. Synthesis, characterization and application of Ag
doped ZnO nanoparticles in a composite resin. Mater Sci Eng C
Mater Biol Appl. 2019;96:391-401. http://dx.doi.org/10.1016/j.
msec.2018.10.063. PMid:30606547.
34. Teixeira JA, Costa e Silva AV, Santos VE Jr, Melo PC Jr, Arnaud
M, Lima MG, et al. Effects of a new nano-silver fluoride-
containing dentifrice on demineralization of enamel and
Streptococcus mutans
adhesion and acidogenicity. Int J Dent.
2018;2018:1351925. http://dx.doi.org/10.1155/2018/1351925.
PMid:29853891.
35. Han J, Chen L, Duan SM, Yang QX, Yang M, Gao C,etal. Efficient
and quick inactivation of SARS coronavirus and other microbes
exposed to the surfaces of some metal catalysts. Biomed Environ
Sci. 2005;18(3):176-80. PMid:16131020.
36. Talebian S, Wallace GG, Schroeder A, Stellacci F, Conde J.
Nanotechnology-based disinfectants and sensors for SARS-
CoV-2. Nat Nanotechnol. 2020;15(8):618-21. http://dx.doi.
org/10.1038/s41565-020-0751-0. PMid:32728083.
37. Seneviratne CJ, Balan P, Ko KKK, Udawatte NS, Lai D, Ng
DHL, et al. Efficacy of commercial mouth-rinses on SARS-
CoV-2 viral load in saliva: randomized control trial in Singapore.
Infection. 2021;49(2):305-11. http://dx.doi.org/10.1007/s15010-
020-01563-9. PMid:33315181.
38. Khan FR, Kazmi SMR, Iqbal NT, Iqbal J, Ali ST, Abbas SA. A
quadruple blind, randomised controlled trial of gargling agents
in reducing intraoral viral load among hospitalised COVID-
19 patients: a structured summary of a study protocol for a
randomised controlled trial. Trials. 2020;21(1):785. http://dx.doi.
org/10.1186/s13063-020-04634-2. PMid:32928313.
39. Ziaeefar P, Bostanghadiri N, Yousefzadeh P, Gabbay J,
Bonjar AHS, Ahsaie MG,etal. The efficacy of mouthwashes
in reducing SARS-CoV-2 viral loads in human saliva: a
systematic review. New Microbes New Infect. 2022;49-
50:101064. http://dx.doi.org/10.1016/j.nmni.2022.101064.
PMid:36530834.
40. Peters MD, Godfrey CM, Khalil H, McInerney P, Parker D, Soares
CB. Guidance for conducting systematic scoping reviews.
Int J Evid Based Healthc. 2015 Sep;13(3):141-6. doi: 10.1097/
XEB.0000000000000050. PMID: 26134548.
41. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew
M,etal. Preferred reporting items for systematic review and
meta-analysis protocols (PRISMA-P) 2015 statement. Syst
Rev. 2015;4(1):1. http://dx.doi.org/10.1186/2046-4053-4-1.
PMid:25554246.
42. Molena KF, Pinto LC, Dalben GS. The use of hyaluronic acid in
individuals with cleft lip and palate: literature review. J Cleft Lip
Palate Craniofacial Anomalies. 2021;8(2):143-8. http://dx.doi.
org/10.4103/jclpca.jclpca_2_21.
43. Steinhauer K, Meister TL, Todt D, Krawczyk A, Paßvogel L,
Becker B,etal. Comparison of the in-vitro efficacy of different
mouthwash solutions targeting SARS-CoV-2 based on the
European Standard EN 14476. J Hosp Infect. 2021;111:180-3.
http://dx.doi.org/10.1016/j.jhin.2021.01.031. PMid:33582201.
44. Chang SY, Huang KY, Chao TL, Kao HC, Pang YH, Lu L,etal.
Nanoparticle composite TPNT1 is effective against SARS-CoV-2
and influenza viruses. Sci Rep. 2021;11(1):8692. http://dx.doi.
org/10.1038/s41598-021-87254-3. PMid:33888738.
45. Valdez-Salas B, Beltran-Partida E, Cheng N, Salvador-Carlos J,
Valdez-Salas EA, Curiel-Alvarez M,etal. Promotion of surgical
masks antimicrobial activity by disinfection and impregnation
with disinfectant silver nanoparticles. Int J Nanomedicine.
2021;16:2689-702. http://dx.doi.org/10.2147/IJN.S301212.
PMid:33854315.
46. Xu C, Wang A, Hoskin ER, Cugini C, Markowitz K, Chang
TL, et al. Differential effects of antiseptic mouth rinses on
SARS-CoV-2 infectivity in vitro. bioRxiv. 2020. https://doi.
org/10.1101/2020.12.01.405662. In press.
47. Pelletier JS, Tessema B, Frank S, Westover JB, Brown
SM, Capriotti JA. Efficacy of povidone-iodine nasal
and oral antiseptic preparations against Severe Acute
Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2). Ear
Nose Throat J. 2021;100(2S):192S-6S. http://dx.doi.
org/10.1177/0145561320957237. PMid:32951446.
48. Bidra AS, Pelletier JS, Westover JB, Frank S, Brown SM, Tessema
B. Rapid in-vitro inactivation of Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) using povidone-iodine
oral antiseptic rinse. J Prosthodont. 2020;29(6):529-33. http://
dx.doi.org/10.1111/jopr.13209. PMid:32511851.
49. Bidra AS, Pelletier JS, Westover JB, Frank S, Brown SM, Tessema
B. Comparison of in vitro inactivation of SARS CoV-2 with
hydrogen peroxide and povidone-iodine oral antiseptic rinses.
J Prosthodont. 2020;29(7):599-603. http://dx.doi.org/10.1111/
jopr.13220. PMid:32608097.
50. Gottsauner MJ, Michaelides I, Schmidt B, Scholz KJ, Buchalla W,
Widbiller M,etal. A prospective clinical pilot study on the effects
of a hydrogen peroxide mouthrinse on the intraoral viral load
of SARS-CoV-2. Clin Oral Investig. 2020;24(10):3707-13. http://
dx.doi.org/10.1007/s00784-020-03549-1. PMid:32876748.
51. Koch-Heier J, Hoffmann H, Schindler M, Lussi A, Planz
O. Inactivation of SARS-CoV-2 through treatment with
the mouth rinsing solutions ViruProX® and BacterX® Pro.
Microorganisms. 2021;9(3):521. http://dx.doi.org/10.3390/
microorganisms9030521. PMid:33802603.
52. Lu MM, Ge Y, Qiu J, Shao D, Zhang Y, Bai J,etal. Redox/pH
dual-controlled release of chlorhexidine and silver ions from
biodegradable mesoporous silica nanoparticles against oral
biofilms. Int J Nanomedicine. 2018;13:7697-709. http://dx.doi.
org/10.2147/IJN.S181168. PMid:30538453.
53. Ahrari F, Eslami N, Rajabi O, Ghazvini K, Barati S. The antimicrobial
sensitivity of Streptococcus mutans and Streptococcus sangius
to colloidal solutions of different nanoparticles applied as
mouthwashes. Dent Res J. 2015;12(1):44-9. http://dx.doi.
org/10.4103/1735-3327.150330. PMid:25709674.
54. Besinis A, Peralta T, Handy RD. The antibacterial effects of silver,
titanium dioxide and silica dioxide nanoparticles compared to
the dental disinfectant chlorhexidine on Streptococcus mutans
using a suite of bioassays. Nanotoxicology. 2014;8(1):1-16. http://
dx.doi.org/10.3109/17435390.2012.742935. PMid:23092443.
55. Du T, Lu J, Liu L, Dong N, Fang L, Xiao S,etal. Antiviral activity of
graphene oxide-silver nanocomposites by preventing viral entry
and activation of the antiviral innate immune response. ACS
Appl Bio Mater. 2018;1(5):1286-93. http://dx.doi.org/10.1021/
acsabm.8b00154. PMid:34996232.
56. Guimarães TC, Marques BBF, Castro MV, Secco DA, Porto LCMS,
Tinoco JMM, et al. Reducing the viral load of SARS-CoV-2 in
the saliva of patients with COVID-19. Oral Dis. 2022;28(Suppl
2):2474-80. http://dx.doi.org/10.1111/odi.14118. PMid:34963033.