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ABSTRACT
Objective: Analyze the phenotypic expression of virulence factors in Candida albicans biofilms against plant glycolic
extracts. Material and Methods: The biofilms of Candida albicans (ATCC 18804) obtained from incubation for 
48 hours were exposed for 5 minutes and 24 hours to different concentrations of glycolic extracts of Hamamelis 
virginiana and Persea americana, Cynara scolymus L and Stryphnodendron barbatiman M, in order to verify the 
antifungal activity of the proteinase, phospholipase and hemolysin. Results: All extracts were effective in reducing 
biofilm. In contact for 5 minutes. the extracts reduced 50% of the biofilm. After 24 hours, the Persea americana 
extract showed the biofilm at 90%, followed by Cynara scolymus, which interrupted it at 85%, There was a change 
in proteinase intensity after 5 minutes and 24 hours. with an average enzymatic activity of 0.69 compared to 
the control of 0.49. Cynara scolymus was the extract with the highest mean concentration of 100 mg/ml; the 
phospholipase intensity was changed with Stryphnodendron barbatiman being more effective in 24 hours compared 
to the control (p< 0.0001). The hemolysin secretion was modified by Hamamelis virginiana (12.5 mg/ml) after 
5 minutes of exposure, and in 24 hours. all extracts were capable to cause changes in secretion. Conclusion: The 
tested extracts have antifungal potential in Candida albicans biofilms, implying a significant reduction in virulence 
factors. Thus, these can be indicated as an alternative therapeutic tool to reduce the morbidity of these infections, 
as in both investigated exposure times. they were able to reduce the
enzymatic secretion of the fungus.
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RESUMO
Objetivo: Analisar a expressão fenotípica de fatores de virulência em biofilmes de Candida albicans frente a 
extratos glicólicos de plantas. Material e Métodos: Os biofilmes de Candida albicans (ATCC 18804) obtidos a 
partir de incubação de 48 horas foram expostos por 5 minutos e 24 horas a diferentes concentrações de extratos 
glicólicos de Hamamelis virginiana e Persea americana, Cynara scolymus L e Stryphnodendron barbatiman M, 
a fim de verificar a ação antifúngica da proteinase, fosfolipase e hemolisina. Resultados: Todos os extratos 
foram eficazes na redução do biofilme. Em contato por 5 minutos. os extratos reduziram 50% do biofilme. 
Após 24 horas. o extrato de Persea americana apresentou o biofilme em 90%, seguido de Cynara scolymus, que 
o interrompeu em 85%. Houve mudança na intensidade da proteinase após 5 minutos e 24 horas, com uma 
atividade enzimática média de 0,69 em comparação com o controle de 0,49. Cynara scolymus foi o extrato 
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INTRODUCTION

Candida albicans is a dimorphic fungus that 
can change its commensal form to an invasive. 
opportunistic pathogenic form. This transition is an 
important example of their phenotypic expression. 
in which a switch between a unicellular and a 
multicellular gene expression program occurs [1]. 
Its prevalence in hemocompatible isolates is 
high. and it is mainly responsible for invasive 
fungal infections (IFI) that affect hospitalized 
and immunocompromised patients. especially 
those who make prolonged use of broad-spectrum 
antibiotics [2-4].

This species can cause superficial and invasive 
infections with the serious potential to enter the 
bloodstream and affect several organs. causing 
harm to the patient and even exposing him to 
the risk of death in the most severe forms of 
dissemination [5-7]. Mortality rates caused by 
C. albicans vary worldwide from 19.6% to 67%. 
In the United States, the pathogen is ranked 
as the 4th most prevalent microorganism in 
nosocomial infections that cause death. The ability 
to induce disease is directly related to host defense 
mechanisms and virulence factors associated with 
the pathogen [8-12].

The pathogenicity of C. albicans is due to 
its morphogenesis. its ability to form a biofilm. 
and tissue invasion by different mechanisms, 
including endocytosis, active penetration induced 
by hyphae, and the production and secretion of 
hydrolytic enzymes such as phospholipases and 
proteinases, in addition to hemolysin. which 
causes erythrocyte hemolysis [13-15].

Aspartyl-proteinases (SAP) are encoded by 
a family of 10 genes (SAP1–SSAP10) that play a 
vital role in the virulence of C. albicans as well 
as assist in the formation of hyphae, phenotypic 

exchange, adherence, and degradation of host 
tissue proteins. The enzyme acts on junction 
intracellular proteins, as well as components such 
as collagen and keratin, in addition to degrading 
proteins associated with host defense such as 
immunoglobulins and cytokines [16,17].

Phospholipases are a group of enzymes 
located on the surface of the yeast and at the end 
of the germ tube. They hydrolyze phospholipids in 
fatty acids and other lipophilic substances during 
the period of tissue invasion, causing damage to 
the host’s epithelial cells [18-20].

In addition to acting on virulence. these 
enzymes secreted by C. albicans also help in 
the development of antifungal resistance to 
conventional antibiotics. Due to the continuous 
and early use of antifungals in the hospital 
environment. resistance to this pathogen associated 
with high mortality has been prevalent [21,22]. 
For this reason. alternative medicine has been 
sought for drugs capable of combating this species, 
acting mainly in its enzymatic production, in the 
control of infection, and in the inhibition of biofilm 
formation, using herbal medicines obtained from 
plant extracts, dry fruits, and essential oils.

A small plant, with golden yellow leaves. native 
to North America called Hamamelis virginiana has 
already been studied showing promising results in 
the treatment of gastrointestinal and inflammatory 
skin diseases, also helping in the healing of wounds 
and burns, as it is rich in tannins, flavonoids, 
and proanthocyanidins. Another study identified 
that it has resistance to degradation by bacterial 
collagenase [23-26]. Another fruit with several 
proven biological activities is Persea americana, 
popularly known as avocado. which acts as 
an antioxidant, antidiabetic, antihypertensive, 
antimicrobial, antinociceptive [27-30].

com maior concentração média de 100 mg/ml; a intensidade da fosfolipase foi alterada com Stryphnodendron 
barbatiman sendo mais efetivo em 24 horas em relação ao controle (p< 0,0001). A secreção de hemolisina 
foi modificada por Hamamelis virginiana (12,5 mg/ml) após 5 minutos de exposição e em 24 horas. todos 
os extratos foram capazes de causar alterações na secreção. Conclusão: Os extratos testados apresentam 
potencial antifúngico em biofilmes de Candida albicans, implicando em redução significativa dos fatores de 
virulência. Assim, estes podem ser indicados como uma ferramenta terapêutica alternativa para reduzir a 
morbidade dessas infecções, já que em ambos os tempos de exposição investigados, eles foram capazes de 
reduzir a secreção enzimática do fungo
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Cynara scolymus L, known worldwide 
as artichoke, is an herbaceous plant, native 
to the Mediterranean region, and it is used in 
medicine for the treatment of dyspeptic disorders 
and having high antioxidant and anti-aging 
properties [31,32]. Stryphynodendron barbatiman 
is a plant native to the Brazilian Amazon but 
can also be found in other Brazilian regions. Its 
properties perform anti-inflammatory, healing, 
astringent, hemostatic, antimicrobial, antifungal, 
and antiseptic functions [26].

The glycolic extracts of H. virginiana and 
P. americana, C. scolymus and S. barbatiman 
obtained excellent results regarding the antifungal 
action. When used in low concentrations, 
presenting low cytotoxicity for the host tissues. 
Thus, knowing the antifungal potential of these 
extracts, it becomes interesting to investigate their 
effect on the phenotypic expression of virulence 
factors in C. albicans. In particular, it is valuable 
to understand the mechanism of action of these 
extracts to inhibit the enzymatic and hemolytic 
activity of this fungus when organized in a biofilm.

MATERIALS AND METHODS

Standard strains of C. albicans (ATCC 
18804) were used. kept in a freezer at -70°C. in 
the Microbiology and Immunology Laboratory of 
the Institute of Science and Technology of São 
José do Campos/UNESP. reactivated in Dextrose 
Sabouraud medium. and incubated for 48 hours 
at 37°C. The glycolic extracts of H. virginiana 
L, P. americana M, C. scolymus L and the bark 
of S. barbatiman M, were prepared in 20% 
propylene glycol. obtained from the company 
Mapric (São Paulo. SP. Brazil). with the due 
reports and specifications.

Minimum Inhibitory Concentration (MIC) and 
Minimum Fungicide Concentration (MFC)

To determine the MIC. the method of 
microdilution in broth was used by the Clinical 
and Laboratory Standards Institute (CLSI), 
standards M7- A6 and M27- A2. The inoculum 
was prepared from the culture for 24 hours. in 
sterile physiological solution (NaCl 0.9%) and 
standardized in a spectrophotometer (Micronal) 
with 0.380 absorbance at a wavelength of 
530 nm.

The test was performed on a microplate 
(KASVI. Parana. Brazil), where 100 μl of culture 

medium (broth Mueller Hinton-Himedia, Mumbai, 
India) and 100 μl of the extracts were added only 
in the first column of wells, from where they 
departed a series of 12 serial dilutions. and the 
inoculants were added.

After incubation from 24 hours to 37 oC. 
the MIC was determined in the first well of the 
microplate. which did not present turbidity. 
indicative of microbial growth. For the 
determination of the MFC of the extract. they were 
inoculated into plates containing Sabouraud-
dextrose culture medium (Himedia) and 20 μl 
of the MIC, as well as 20 μl of all other higher 
concentrations. After 48 h of incubation at 
37 oC, the drop in which colony growth was not 
observed was determined as the MFC of the plant 
extract to C. albicans.

Biofilm formation

The biofilms were formed in the background 
of 24 well plates (KASVI. Parana. Brazil). For 
this. the inoculum of the microorganism in 
broth was prepared with yeast nitrogen base 
(YNB-Himedia) supplemented with 100 mM 
glucose. diluted 10 times in sterile distilled water. 
For this, the microorganism was incubated at 
37°C for 16 h. After this period. the inoculum 
was centrifuged and washed twice with sterile 
physiological solution (NaCl 0.9%) and made 
into standard suspensions in a spectrophotometer 
(B582, Micronal, São Paulo. Brazil) containing 
107 UFC/ml in YNB broth (10x). The microbial 
suspension (1 ml) was placed in the microplate 
wells, and it was incubated for 1 h and 30 min 
(37 °C under agitation of 75 rpm) for initial 
adhesion. After that time, the wells were washed 
twice with sterile physiological solution and 
placed in 1 ml of BHI broth. The plate was then 
incubated under the same conditions as the initial 
adhesion for 48 hours; however, after 24 hours 
of incubation, the culture medium was changed. 
After the formation period of the biofilm. this was 
put in contact with the extract.

Exposure to plant extracts

After the biofilm of 48 hours, this was 
exposed to the action of the glycolic extracts of 
Hamamelis virginiana, Persea americana, Cynara 
scolymus L., and Stryphnodendron barbatiman 
M. Concentrations were determined by the CIM 
and CFM. as shown in Table I and tested for 
5 minutes and 24 hours.
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The wells were washed three times with 
PBS and received 1 mL of each extract in the 
three different concentrations. Five independent 
experiments were performed, with 3 repetitions 
each, totaling n = 15 for each experimental group. 
The control group was maintained in sterile saline. 
The plates with the different concentrations of 
the extract were incubated for 5 minutes at room 
temperature and 24 hours at 37°C under agitation.

After the exposure time, the supernatant 
was discarded, and the joined cells were washed 
three times with 2 ml of sterile physiological 
solution. The biofilm was added to 1 ml of sterile 
physiological solution, and the microorganisms 
were disengaged by friction with the aid of a 
disposable tip for 30 seconds.

Analysis of virulence factors

To evaluate the secretion of proteinase. the 
medium recommended by Rüchel et al. (1982) 
was prepared as follows: The first medium (a) is 
composed of 15 g of noble agar and 900 ml of 
distilled water. The medium (B), composed of 
2.5 g of liquid vitamin (Protovit), 11.5 g of yeast 
carbon base (Sigma), and 2 g of bovine serum 
albumine (Sigma), was sterilized by filtration 
with a pore membrane of 0.22 μm diameter 
(Millipore, Sao Paulo, Brazil). The medium A was 
sterilized in an autoclave at 121 oC for 15 minutes 
and cooled to 50 oC. Then the medium B was 
added to the A, homogenized, and distributed 
in sterile Petri dishes.

The strains obtained from the biofilm, 
previously exposed to the extracts and incubated 
for 24 hours in Agar Sabouraud Dextrose, were 
sown, Minced, and equidistantly placed on 
the plates, which remained incubated at 37 ºC 
for 5 days. The production of proteinase was 
verified by the formation of hyaline halo around 
the colony, resulting from the hydrolysis of the 
substrate.

For the evaluation of the production of 
phospholipase. the proposed medium was used 

by Polak. In 1000 ml of sterile distilled water, 
10 g of peptone, 30 g of glucose, 57.3 g of sodium 
chloride, 0.55 g of calcium chloride, and 20 g of 
agar were dissolved. After sterilizing the medium 
in an autoclave (121 ºC for 15 minutes) and 
cooling it to 50 ºC, an emulsion of sterile egg 
yolk without potassium teluritum was added to it.

The strains obtained from the biofilm. 
previously exposed to the extracts. and incubated 
for 24 hours in Sabouraud dextrose medium were 
sown at equidistant points in the middle, and 
after 4 days of incubation at 37 ºC, the formation 
of a zone of yellowish color was observed around 
the colonies.

To evaluate the hemolytic activity of the 
strains exposed to the extracts. 1000 ML of 
the dextrose Sabouraud agar culture medium 
supplemented with 30 g glucose, pH 5.6, 
after sterilization in an autoclave (121 oC for 
15 minutes) were prepared, cooled to 50 oC, and 
added to 70 mL of ram blood.

The strains obtained from the biofilm and 
incubated for 24 hours in Sabouraud dextrose 
culture medium with chloramphenicol were 
sown in this medium and incubated at 37 ºC 
for two days. After that time, the presence of a 
translucent halo around the colonies indicated 
positive hemolytic activity.

The enzyme activity of proteinase (Pz), 
phospholipase (PHz), and hemolysin (Hz) was 
evaluated by the ratio between the diameter of 
the colony and the diameter of the colony plus 
the precipitation zone. The lower the value of 
Pz, the greater the enzyme activity. The enzyme 
activity was classified as negative (PZ = 1), 
positive (0.64 ≥ PZ < 1), and strongly positive 
(Pz < 0.64).

Statistical analysis

The data that presented a normal distribution 
(Shapiro Wilks) were statistically analyzed by the 
ANOVA method complemented by the Tukey 
test, with a significance level of 5% (P ≤ 0.05). 

Table I - Concentration of plant extracts used for control of growth in the biofilm of 48 hours of C. albicans

Glycolic Extract Concentrations used in biofilm (5 minutes and 24 hours)

Cynara scoymus 25 mg/mL 50 mg/mL 100 mg/mL

Hamamelis virginiana L. 3.13 mg/mL 6.25 mg/mL 12.5 mg/mL

Persea americana 6. 25 mg/mL 12.5 mg/mL 25 mg/mL

Stryphynodendron barbatiman 25 mg/mL 50 mg/mL 100 mg/mL
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The results that did not present a normal 
distribution were analyzed by the Kruskal-Wallis 
test and the Dunns test, with a significance level 
of 5% (P ≤ 0.05).

RESULTS

Determination of MIC and MFC

In the test of the microdilution in broth. 
it was possible to determine the most effective 
concentrations for controlling the growth 
of C. albicans in its planktonic form. The 
most effective extract was H. virginiana. 
which inhibited growth and was a microbicide 
when in concentrations above 6.25 mg/ml, 
followed by P. americana (avocado), which 
displayed inhibitory and microbicide capacity 
in concentrations above 12.5 mg/ml. When 
exposed to the extracts of S. barbatiman and 
C. scolymus (artichoke), no concentration 
was capable of inhibiting the growth of 
microorganisms.

To verify the action of the extract in biofilm, 
it was chosen to use the concentration before 
the MIC and a concentration after (Table I) so 
that the cells remain alive, and it is possible to 
check the effect of the extracts on the secretion 
of virulence factors.

Growth control in biofilm

The biofilms of 48 hours of C. albicans 
were kept in contact with the glycolic extracts 
for 5 min and 24 h, in different concentrations 
(Table I). When in contact for 5 minutes, all the 
tested extracts were able to reduce the biofilm 
by about 50% in relation to the control, as 
shown in Figure 1 (A, C, E, and G). There is no 
statistical difference being verified between the 
different concentrations tested for each extract. 
In 24 hours of contact. the extract of C. scolymus 
was able to reduce on average 55.3% in relation 
to the control; the concentration of 100 mg/ml 
showed a reduction near 85%, with a statistical 
difference between the groups (p = 0.0008) 
(Figure 1B).

The biofilms of C. albicans. when treated 
by the different concentrations of H. virginiana. 
presented average reduction percentages of 
54.85% to 5 min and 58.53% to 24 h. When 
compared to the tested concentrations, there was 
no statistical difference observed between them 

for 5 min (p = 0.8408) and for 24 h (p = 0.3527) 
of contact, as shown in Figure 1 C and D.

The reduction percentage of the glycolic 
extract of P. americana in contact with the 
biofilms of C. albicans for 5 min was less than 
50% in relation to the control (Figure 1 E), 
with no statistical difference between the tested 
concentrations (P = 0.7644). In the period 
of 24 hours, the average reduction in relation 
to the control was 55.17%, 88%, and 90% in 
the different concentrations of 6.25 mg/ml, 
12.5 mg/ml, and 25 mg/ml, respectively. In the 
statistical analysis (p = 0.0777), no difference 
was verified between the concentrations tested 
(Figure 1F).

In 5-minute contact with the glycolic extract 
of S. barbatiman. the biofilms of C. albicans 
showed a 42.4% reduction in relation to the 
control, with no statistical difference between 
the different concentrations tested (p =0.8534). 
Already after 24 hours of exposure to the extract, 
it was able to reduce the biofilm by 57.4% in 
relation to the control. When the concentrations 
were compared between them, there was no 
statistical difference (p = 0.1392).

Analysis of virulence factors

Table II brings the found values of expression 
of the virulence factors found after exposure to 
the different concentrations of the different 
plant extracts of 5 minutes of exposure. The 
most effective extract in reducing the expression 
of proteinase was that of C. scolymus in the 
concentration of 100 mg/ml. the production of 
phospholipase, in turn, was better controlled by 
the extract of S. sarbatiman Achieving the same 
efficiency in all the tested concentrations. The 
production of hemolysin. was only altered by 
exposure to the extract of H. virginiana at the 
concentration of 12.5 mg/ml.

Table III shows the results obtained after 
exposure to the extract for 24 hours, in which a 
decrease in the expression of the most effective 
virulence factors can be observed in relation 
to the control. All tested extracts were able to 
reduce the reduction of these factors, and the 
extracts of S. barbatiman at 100 mg/ml were 
more effective in reducing the reduction of 
proteinase and phospholipase. The production 
of hemolysin suffered more interference after 
exposure to a concentration of 12.5 mg/ml of 
H. virginiana extract.
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Figure 1 - A-F. Reduction percental of the mature biofilm of C. albicans after exposure to the glycolic extracts. for 5 minutes and 24 hours. 
Legend: A. C. E. and G are referring to exposure to the extract for 5 minutes; B. D. F. and H are referring to exposure for 24 hours.
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Table II - Production of virulence factors of C. albicans after 5 minutes of exposure to the extracts

Cynara scolymus

Control 100 mg/ml 50 mg/ml 25mg/ml Value of P

Proteinase (Pz) 0.51 0.74* 0.66** 0.53 <0.0001

Phospholipase (Phz) 0.53 0.57 0.62* 0.60* <0.0001

Hemolysin (Hz) 0.46 0.50 0.47 0.43 0.0454

Hamamelis virginiana

Control 12.5 mg/ml 6.25 mg/ml 3.13 mg/ml Value of P

Proteinase (Pz) 0.50 0.70* 0.68* 0.72* <0.0001

Phospholipase (Phz) 0.44* 0.55** 0.46* 0.50*** <0.0001

Hemolysin (Hz) 0.49 0.66* 0.50 0.49 <0.0001

Persea americana

Control 25 mg/ml 12.5 mg/ml 6.25 mg/ml Value of P

Proteinase (Pz) 0.46 0.70* 0.65* 0.64** <0.0001

Phospholipase (Phz) 0.44 0.43 0.46 0.53* <0.0001

Hemolysin (Hz) 0.48 0.55 0.52 0.52 0.1365

Sphyrodendron barbatiman

Control 100 mg/ml 50 mg/ml 25mg/ml Value of P

Proteinase (Pz) 0.51 0.72* 0.71* 0.54 <0.0001

Phospholipase (Phz) 0.52 0.62* 0.66* 0.62* <0.0001

Hemolysin (Hz) 0.49 0.47** 0.47** 0.45* <0.0001

*=p<0.5; **=p>0.5

Table III - Production of virulence factors of C. albicans after 24 hours of exposure to the extracts

Cynara scolymus

Control 100 mg/ml 50 mg/ml 25mg/ml Valor of P

Proteinase (Pz) 0.45 0.78* 0.68** 0.71** <0.0001

Phospholipase (Pz) 0.49 0.64* 0.67* 0.67* <0.0001

Hemolysin (Hz) 0.46 0.64* 0.58*/** 0.55** <0.0001

Hamamelis virginiana

Control 12.5 mg/ml 6.25 mg/ml 3.13 mg/ml Valor of P

Proteinase (Pz) 0.52 0.71* 0.72* 0.72* <0.0001

Phospholipase (Pz) 0.56 0.70* 0.67* 0.73* <0.0001

Hemolysin (Hz) 0.50* 0.70** 0.61*** 0.52* <0.0001

Persea americana

Control 25 mg/ml 12.5 mg/ml 6.25 mg/ml Value of P

Proteinase (Pz) 0.54 0.75* 0.70* 0.70* <0.0001

Phospholipase (Pz) 0.53 0.61* 0.63* 0.61* <0.0001

Hemolysin (Hz) 0.50 0.68* 0.56** 0.57** <0.0001

Sphyrodendron barbatiman

Control 100 mg/ml 50 mg/ml 25mg/ml Value of P

Proteinase (Pz) 0.45 0.76* 0.71*/** 0.68** <0.0001

Phospholipase (Pz) 0.50 0.74* 0.67*/** 0.64** <0.0001

Hemolysin (Hz) 0.46 0.63* 0.69* 0.60* <0.0001

*=p<0.5; **=p>0.5
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DISCUSSION

All around the world, there has been 
observed a significant increase in the incidence 
of fungal infections, thus affecting global health. 
That is why many research groups have included 
in their studies objectives that aim to understand 
biochemical and molecular characteristics that 
interfere in the pathogenicity and fungal virulence, 
as well as verify susceptibility and resistance 
to antifungals, to propose new antimicrobial 
alternatives. With the species of Candida spp., 
it has not been different, mainly with Candida 
albicans, due to its high prevalence. Many studies 
prioritizing the mentioned items have already 
been reported in the literature [11,33-35].

According to the World Health Organization, 
plant extracts or their active principles are used 
by 80% of the world’s population. Due to the 
growing use of herbal medicine, several studies 
are being done to assess the antimicrobial activity 
of these compounds [14,36,37]. The extracts 
were used in inhibitory concentrations; after 
all. the objective of the study was to evaluate 
the production of virulence factors associated 
with the invasiveness and perpetuation of the 
microorganisms after exposure to the extracts, 
allowing analysis later concerning the production 
of proteinase, phospholipase, and hemolysin.

The present study was not the first to 
evaluate the antifungal action of the extracts of 
C. scolymus, H. virginiana, P. americana, and S. 
barbatiman, and as expected, the glycolic extracts 
of these plants, were able to reduce the biofilm of 
C. albicans, corroborating with several authors. 
These results are promising because the main 
death rates related to this microorganism are in 
the production of biofilms [26,38-42]. However, 
no studies were found in the scientific literature 
that associated the action of the extracts tested 
in this study with the phenotypic expression of 
the virulence factors of C. albicans, mainly the 
hydrolytic enzymes produced by the different 
species of Candida, which have stood out as 
possible therapeutic targets, due to their decisive 
role in the pathological process [13].

The production of proteinase was affected 
by exposure to all the tested extracts; although 
they were not capable of negative production, 
there was a significant reduction compared to 
the control [43]. Different from this study, the 
exhibition of 50 strains of C. albicans (all of 
them producing proteinase and phospholipase), 

isolated from patients with oral candidiasis. after 
being subjected to liver transplant, to the crude 
extract of the leaves of Eugenia uniflora (Cherry), 
was able to zero the secretion of these enzymes, 
in 94% of the strains tested [44].

The effectiveness of the extract of the 
leaf of Pluchea dioscoridis was analyzed in 
the different expressions of proteinases; this 
presented high potential against this enzyme 
because the expression decreased by 90% and 
40% for SAP1 and SAP10, respectively [45]. 
These characteristics attenuating the production 
of C. albicans proteinase have also been observed 
in studies with the oil of Ocimun Sanctum 
(Basil-Sacred), and similar results were observed 
in reducing the production of proteinase. It was 
also able to inhibit the expression of the SAP1 gene, 
responsible for encoding these enzymes [46]. 
The same was seen after contact for 18 hours 
with the methanolic extract of Juglans regia. in 
which a reduction in the production of proteinase 
to the control (Pz = 0.34) was observed in the 
concentrations of 175 μl/mL (PZ = 0.45) and 
350 μl/mL (Pz = 0.62) [47].

Regarding phospholipases. it can be seen 
that S. babatiman extracts were more effective 
in reducing phospholipase production when 
compared to the highest tested concentrations. 
The same happened when strains of C. albicans 
were isolated from patients with prosthetic 
stomatitis for 30 min from the essential oil of 
Origanum vulgare. To evaluate the anti-enzymatic 
activity, it was verified that the oil was able to 
inhibit the production of phospholipase compared 
to the control [37]. Different from this work, 
which verified a statistically relevant reduction in 
the secretion of phospholipase in microorganisms 
that were exposed to extracts for 24 hours, the 
results were similar to those observed after 
exposure to the essential oil of Junglans regia, 
which presented a reduction in the production 
of phospholipase [47].

The flavones are part of the flavonoids group, 
compounds with widely known biological activity 
in traditional medicine. A flavone, 2-phenyl-4h-
chromen-4-one, has been tested in the control of 
the growth and enzyme activity of C. albicans, as 
well as its cytotoxicity. Although the compound 
presents a significant reduction in the growth of 
C. albicans and low cytotoxicity, it wasn’t able 
to alter the patterns of secretion of enzymes like 
proteinase and phospholipase [48-50].
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Different concentrations of Dracorodim’s 
percolation. a flavonoid extracted from a plant 
widely used in Chinese medicine, the Daemonorops 
draco (Dragon’s Blood), were put in contact with 
strains of C. albicans for 24 hours and were able 
to inhibit the growth of the fungus as well as the 
formation of the biofilm and the morphological 
transition. The active principle was also able to 
inhibit the secretion of phospholipase concerning 
the control (PHz = 0.6), compared to the different 
concentrations tested (16, 32, and 64 mM), which 
exhibited PHz statistically inferior to the control 
(0.64, 0.68, and 0.69, respectively) [51]. Different 
from this, the cetonic fractions of the aqueous 
extract of Buchenavia tomentosa presented an 
antifungal effect, but exposure to the extract for 
1 hour was not able to change the production of 
proteinase and phospholipase, with Pz avenge 
from 0.45 to all groups [14]. Like these plants, 
H. virginiana has flavonoid-rich properties as well.

About hemolysin secretion, it was possible 
to verify in this work that the glycolic extract of 
H. virginiana was the only one capable of altering 
the secretion of hemolysin at a concentration 
of 12.5 mg/mL during a 5-minute exposure. 
However, when the strains were exposed for 
24 hours, it was possible to perceive a significant 
reduction in the production of hemolysin. Similar 
results were obtained when strains of C. albicans, 
resistant to different antifungals, were tested in 
sub-MIC oil concentrations of Carum copticum 
and Thymus vulgaris [52,53].

Essential oils of different plants, Melissa 
citratus indica, Cymbopogon citratus, Pelargonium 
graveolens, and Eugenia caryophyllata, were placed 
in contact with standard strains of C. albicans 
and subsequently evaluated for the secretion 
of hemolysin, among other factors of virulence, 
concluding that these oils have a negative impact 
on the pathogenicity of C. albicans acting in 
an inhibitory way in the production of these 
factors [54]. However, another study demonstrated 
that the essential oil of Mentha piperita, showed 
results in all virulence factors of C. albicans and 
the cinnamon bark oil exhibited high antifungal 
activity, active against a pre-formed C. albicans 
biofilm [55,56].

As well as other microorganisms, Escherichia 
coli and Staphylococcus aureus have already been 
evaluated, together with C. albicans exposed 
to P. americana extract and Cynara scolymus 
acting against Porphyromonas gingivalis [57]. 

Other studies have already shown that tea. including 
H. virginiana, can decrease oral bacterial bioadhesion 
and act as a photosensitizer in antimicrobial 
photodynamic therapy (aPDT) [40,41].

Work numbers have been used to determine 
the production of these virulence factors by 
C. albicans isolated from different infectious 
outbreaks. Different species of Candida were 
isolated from injuries associated with oral cancer, 
chronic candidiasis, and atypical infections, as well 
as from isolated species of asymptomatic patients. 
When some virulence factors were checked, you 
concluded that the isolated species of patients with 
symptoms, irrespective of the type of lesion, showed 
greater production of proteinase and phospholipase. 
That factors are directly linked to the capacity of 
this microorganism to invade the tissues of the host, 
which leads to an increase in the morbidity of the 
infectious process. Many of the samples isolated 
from infections, whether they come from blood or 
superficial infections, cause a lot of damage to the 
host [10,53,58-63]. Considering the above. these 
data reinforce that the presence of the production 
of these virulence factors is directly related to the 
capacity of these strains to cause disease.

These studies show the importance of 
knowing the standard of production of these 
virulence factors in different types of lesions since 
their production is associated with factors inherent 
to the host and the infectious site. Also, knowledge 
of the virulence factors involved in pathological 
processes can allow new therapeutic strategies to 
be created and can control the infections caused 
by this pathogen. Different factors are involved in 
the action of these extracts. such as the amount of 
tannins, flavonoids, and anthocyanidins, among 
other principles inherent to each plant. The use 
of total extracts allows synergism between these 
compounds. often enhancing your action.

CONCLUSION

This study demonstrated that the tested 
extracts have antifungal potential in Candida 
albicans biofilms, having the ability to influence 
the decrease in the phenotypic expression of 
virulence factors, reducing enzymatic secretion, 
and reaching the proposed objectives. which can 
be indicated as alternative therapeutic tools with 
the objective of reducing the morbidity of these 
infections. In both times tested, the secretion 
of phospholipases, proteases, and hemolyzines 
produced by C. albicans decreased.
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