
12
Braz Dent Sci 2025 Jan/Mar;28 (1): e4663
Kartikasari N et al.
In vitro investigation of flower-like micro-nano topography modifications to improve titanium implant surface properties
Kartikasari N et al. In vitro investigation of flower-like micro-nano topography
modifications to improve titanium implant surface properties
2022;110(7):1314-28. http://doi.org/10.1002/jbm.a.37375.
PMid:35188338.
7. Zhai S, Tian Y, Shi X, Liu Y, You J, Yang Z,etal. Overview of
strategies to improve the antibacterial property of dental
implants. Front Bioeng Biotechnol. 2023;11(9):1267128. http://
doi.org/10.3389/fbioe.2023.1267128. PMid:37829564.
8. Zheng TX, Li W, Gu YY, Zhao D, Qi MC. Classification and research
progress of implant surface antimicrobial techniques. J Dent
Sci. 2022;17(1):1-7. http://doi.org/10.1016/j.jds.2021.08.019.
PMid:35028014.
9. Fernandes VVB Jr, da Rosa PAA, Grisante LAD, Embacher FC,
Lopes BB, de Vasconcellos LGO,etal. Argon plasma application
on the surface of titanium implants: osseointegration study.
Braz Dent Sci. 2023;26(4):1-9. http://doi.org/10.4322/bds.2023.
e3843.
10. Costa PM Fo, Marcantonio CC, de Oliveira DP, Lopes MES,
Puetate JCS, Faria LV,etal. Titanium micro-nano textured surface
with strontium incorporation improves osseointegration: an in
vivo and in vitro study. J Appl Oral Sci. 2024;32:e20240144.
http://doi.org/10.1590/1678-7757-2024-0144. PMid:39292113.
11. Tokmedash AM, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering
multifunctional surface topography to regulate multiple
biological responses. Biomaterials. 2025;319(9):123136. http://
doi.org/10.1016/j.biomaterials.2025.123136. PMid:39978049.
12. Guo Z, Liu H, Wang W, Hu Z, Li X, Chen H,etal. Recent advances
in antibacterial strategies based on TiO2 biomimetic micro/
nano-structured surfaces fabricated using the hydrothermal
method. Biomimetics (Basel). 2024;9(11):656. http://doi.
org/10.3390/biomimetics9110656. PMid:39590228.
13. Kartikasari N, Yamada M, Watanabe J, Tiskratok W, He X, Egusa H.
Titania nanospikes activate macrophage phagocytosis by ligand-
independent contact stimulation. Sci Rep. 2022;12(1):12250.
http://doi.org/10.1038/s41598-022-16214-2. PMid:35851278.
14. Yamada M, Kimura T, Nakamura N, Watanabe J, Kartikasari N,
He X,etal. Titanium nanosurface with a biomimetic physical
microenvironment to induce endogenous regeneration of the
periodontium. ACS Appl Mater Interfaces. 2022;14(24):27703-19.
http://doi.org/10.1021/acsami.2c06679. PMid:35695310.
15. Kartikasari N, Yamada M, Watanabe J, Tiskratok W, He X, Kamano
Y,etal. Titanium surface with nanospikes tunes macrophage
polarization to produce inhibitory factors for osteoclastogenesis
through nanotopographic cues. Acta Biomater. 2022;137:316-30.
http://doi.org/10.1016/j.actbio.2021.10.019. PMid:34673230.
16. Kato E, Yamada M, Kokubu E, Egusa H, Ishihara K. Anisotropic
patterns of nanospikes induces anti-biofouling and mechano-
bactericidal effects of titanium nanosurfaces with electrical cue.
Mater Today Bio. 2024;29(8):101352. http://doi.org/10.1016/j.
mtbio.2024.101352. PMid:39669800.
17. Tan L, Fu J, Feng F, Liu X, Cui Z, Li B,etal. Engineered probiotics
biofilm enhances osseointegration via immunoregulation and
anti-infection. Sci Adv. 2020;6(46):1-10. http://doi.org/10.1126/
sciadv.aba5723. PMid:33188012.
18. Martinez Y, Ausina V, Llena C, Montiel JM. Scientific evidence
on the efficacy of effervescent tablets for cleaning removable
prostheses. A systematic review and meta-analysis. J
Prosthet Dent. 2024;131(6):1071-83. http://doi.org/10.1016/j.
prosdent.2023.01.031. PMid:36870893.
19. Su Y, Komasa S, Sekino T, Nishizaki H, Okazaki J. Nanostructured
Ti6Al4V alloy fabricated using modified alkali-heat treatment:
characterization and cell adhesion. Mater Sci Eng C. 2016;59:617-
23. http://doi.org/10.1016/j.msec.2015.10.077. PMid:26652415.
20. Yamada M, Kato E, Yamamoto A, Sakurai K. A titanium surface
with nano-ordered spikes and pores enhances human dermal
fibroblastic extracellular matrix production and integration of
collagen fibers. Biomed Mater. 2016;11(1):015010. http://doi.
org/10.1088/1748-6041/11/1/015010. PMid:26835848.
21. Jaggessar A, Shahali H, Mathew A, Yarlagadda PKDV. Bio-
mimicking nano and micro-structured surface fabrication for
antibacterial properties in medical implants. J Nanobiotechnology.
2017;15(1):64. http://doi.org/10.1186/s12951-017-0306-1.
PMid:28969628.
22. Gao Q, Hou Y, Li Z, Hu J, Huo D, Zheng H,etal. mTORC2 regulates
hierarchical micro/nano topography-induced osteogenic
differentiation via promoting cell adhesion and cytoskeletal
polymerization. J Cell Mol Med. 2021;25(14):6695-708. http://
doi.org/10.1111/jcmm.16672. PMid:34114337.
23. Chen C, Feng P, Feng F, Zheng Z, Wang J. Micro/nano-surface
modification of titanium implant enhancing wear resistance and
biocompatibility. Int J Mech Sci. 2024;276(May):109385. http://
doi.org/10.1016/j.ijmecsci.2024.109385.
24. Nakamura K, Shirato M, Kanno T, Örtengren U, Lingström P,
Niwano Y. Antimicrobial activity of hydroxyl radicals generated
by hydrogen peroxide photolysis against Streptococcus mutans
biofilm. Int J Antimicrob Agents. 2016;48(4):373-80. http://doi.
org/10.1016/j.ijantimicag.2016.06.007. PMid:27449541.
25. Younis AB, Milosavljevic V, Fialova T, Smerkova K, Michalkova
H, Svec P,et al. Synthesis and characterization of TiO2
nanoparticles combined with geraniol and their synergistic
antibacterial activity. BMC Microbiol. 2023;23(1):207. http://
doi.org/10.1186/s12866-023-02955-1. PMid:37528354.
26. Haghi M, Hekmatafshar M, Janipour MB, Gholizadeh SS, Faraz
MK, Sayyadifar F,etal. Antibacterial effect of TiO2 nanoparticles
on pathogenic strain of E. coli. Int J Adv Biotechnol Res.
2012;3(3):621-4.
27. Serov DA, Gritsaeva AV, Yanbaev FM, Simakin AV, Gudkov
SV. Review of antimicrobial properties of titanium dioxide
nanoparticles. Int J Mol Sci. 2024;25(19):10519. http://doi.
org/10.3390/ijms251910519. PMid:39408848.
28. Almalki AH, Hassan WH, Belal A, Farghali A, Saleh RM, Allah
AE,etal. Exploring the antimicrobial activity of sodium titanate
nanotube biomaterials in combating bone infections: an in vitro
and in vivo Study. Antibiotics (Basel). 2023;12(5):799. http://doi.
org/10.3390/antibiotics12050799. PMid:37237702.
29. Tuikampee S, Chaijareenont P, Rungsiyakull P, Yavirach A. Titanium
surface modification techniques to enhance osteoblasts and
bone formation for dental implants: a narrative review on
current advances. Metals (Basel). 2024;14(5):1-28. http://doi.
org/10.3390/met14050515.
30. Kato E, Sakurai K, Yamada M. Periodontal-like gingival connective
tissue attachment on titanium surface with nano-ordered
spikes and pores created by alkali-heat treatment. Dent Mater.
2015;31(5):e116-30. http://doi.org/10.1016/j.dental.2015.01.014.
PMid:25698416.
31. Joshi B, Regmi C, Dhakal D, Gyawali G, Lee SW. Efficient
inactivation of Staphylococcus aureus by silver and copper
loaded photocatalytic titanate nanotubes. Prog Nat Sci.
2018;28(1):15-23. http://doi.org/10.1016/j.pnsc.2018.01.004.
32. Liu J, Liu J, Attarilar S, Wang C, Tamaddon M, Yang C,etal.
Nano-modified titanium implant materials: a way toward
improved antibacterial properties. Front Bioeng Biotechnol.
2020;8(11):576969. http://doi.org/10.3389/fbioe.2020.576969.
PMid:33330415.
33. Ziegelmeyer T, Martins de Sousa K, Liao TY, Lartizien R, Delay A,
Vollaire J,etal. Multifunctional micro/nano-textured titanium
with bactericidal, osteogenic, angiogenic and anti-inflammatory
properties: insights from in vitro and in vivo studies. Mater
Today Bio. 2025;32(12):101710. http://doi.org/10.1016/j.
mtbio.2025.101710. PMid:40230651.
34. Papa S, Maalouf M, Claudel P, Sedao X, Di Maio Y, Hamzeh-
Cognasse H,etal. Key topographic parameters driving surface
adhesion of Porphyromonas gingivalis. Sci Rep. 2023;13(1):15893.
http://doi.org/10.1038/s41598-023-42387-5. PMid:37741851.