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ABSTRACT

Objective: Early detection is critical for accurately diagnosing and effectively treating oral squamous cell
carcinoma, particularly in regions like Southeast Asia where the prevalence is high. Multiview clustering and
graph autoencoders (GAEs) hold promise for enhancing classification and diagnostic accuracy in oral cancer
histopathological images. This study explores multiview clustering with graph autoencoders (MCGAE) for
reconstructing and analyzing histopathological images in oral cancer. Material and Methods: The Cancer
Genome Atlas Head-Neck Squamous Cell Carcinoma Collection serves as a comprehensive dataset, encompassing
histopathological images from 756 head and neck squamous cell carcinoma samples. Image preprocessing
involves resizing to preserve critical features, feature extraction using pre-trained deep learning architectures,
and multiview clustering with GAEs to enhance clustering performance by integrating data from various views.
The training process optimizes the model using reconstruction loss, clustering loss, and contrastive loss, achieving
convergence when the total loss stabilizes after 100 epochs. Clustering analysis of the dataset reveals strong
separation between clusters, as evidenced by high Calinski-Harabasz and Davies-Bouldin scores. Results: The
model’s performance, enhanced by MCGAE embeddings, is demonstrated through higher silhouette scores and
a superior Calinski-Harabasz Index. The MCGAE model achieves an accuracy of 93.5%, an F1 score of 89.36%,
and an average precision of 97.32%. Furthermore, the low Mean Squared Error and high R? score underscore the
model’s reliability and effectiveness in striking a balance between precision and recall. Conclusion: Multiview
GAEs enhance histopathological diagnoses by reducing diagnostic errors and variability, promoting continuous
learning, and streamlining diagnostic workflows.
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RESUMO

Objetivo: A detecgdo precoce é fundamental para o diagndstico preciso e o tratamento eficaz do carcinoma
espinocelular oral, especialmente em regides como o Sudeste Asiatico, onde a prevaléncia é alta. O agrupamento
de multiplas visualizacdes e os autoencoders graficos (GAEs), oferecem avancos promissores para melhorar a
classificagdo e a precisdo do diagndstico em imagens histopatoldgicas de cancer oral. Este estudo explora o
agrupamento multiview com autoencoders graficos (MCGAE) para gerar e analisar imagens histopatolégicas de
cancer bucal. Material e Métodos: A Colecédo de Carcinoma de Células Escamosas de Cabeca e Pescoco do Atlas
do Genoma do Cancer serve como um conjunto de dados abrangente, englobando imagens histopatolégicas de
756 amostras de carcinoma de células escamosas de cabeca e pescoco. O pré-processamento de imagens envolve o
redimensionamento para preservar recursos essenciais, a extracdo de recursos usando arquiteturas de aprendizagem
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profunda pré-treinadas e o agrupamento de multiplas visualizacdes com GAEs para aprimorar o desempenho do
agrupamento integrando dados de vdrias visualiza¢des. O processo de treinamento otimiza o modelo usando a
perda de reconstrucdo, a perda de agrupamento e a perda contrastiva, alcancando a convergéncia quando a perda
total se estabiliza ap6s 100 épocas. A analise de agrupamento do conjunto de dados revela uma forte separacio
entre os agrupamentos, conforme evidenciado pelas altas pontuag¢des de Calinski-Harabasz e Davies-Bouldin.
Resultados: O desempenho do modelo, aprimorado pelas incorporacdes do MCGAE, é demonstrado por meio
de pontuacoes de silhueta mais altas e um indice Calinski-Harabasz superior. O modelo MCGAE atinge uma
precisdo de 93,5%, uma pontuacao F1 de 89,36% e uma precisdo média de 97,32%. Além disso, o baixo erro
quadratico médio e a alta pontuacdo R? destacam a confiabilidade e a eficdcia do modelo no equilibrio entre
precisdo e recuperacdo. Conclusdo: Os GAEs multiview aprimoram os diagndsticos histopatoldgicos reduzindo
os erros de diagndstico e a variabilidade, promovendo o aprendizado continuo e simplificando os fluxos de

trabalho de diagndstico.
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histopatoldgicas sintéticas.

INTRODUCTION

Oral cancer, also known as oral cavity
cancer, is a global health issue that affects various
structures within the mouth, including the lips,
tongue, cheeks, floor of the mouth, hard and
soft palates, and the oropharynx [1]. It ranks as
the sixth most common cancer worldwide, with
over 300,000 new cases diagnosed annually. This
disease is associated with numerous risk factors,
including tobacco use, alcohol consumption,
human papillomavirus (HPV) strains, poor oral
hygiene, advanced age, gender predispositions,
and immune system disorders [2]. Its symptoms
include persistent sores, gum patches, oral pain,
and speech difficulties. Early detection is pivotal
for accurate diagnosis and improved treatment
outcomes. Treatments for oral cancer include
surgery, radiation therapy, chemotherapy,
targeted therapy, and immunotherapy. Prevention
strategies such as public health campaigns,
vaccination against HPV, and regular dental
screenings can significantly reduce incidence
rates and improve early detection [3].

Despite advancements in treatment
modalities, the disease burden remains substantial,
particularly in low- and middle-income countries
where access to healthcare is limited. The delay
in diagnosis, coupled with high-risk behavioral
practices, exacerbates morbidity and mortality
rates. The need for innovative diagnostic
approaches is increasingly urgent.

Oral squamous cell carcinoma (OSCC),
a predominant form of oral cancer, poses
a significant health concern, especially in

Southeast Asia, where the widespread use of
tobacco and betel quid is a major contributing
factor. Current diagnostic methods, including
clinical examination, imaging, and biopsy, face
inherent limitations. These include difficulty
distinguishing between oral submucous fibrosis
(OSMF) and early-stage OSCC and a scarcity of
skilled histopathologists [4]. Moreover, the lack
of well-annotated histology image databases
for oral diseases hinders the development of
advanced diagnostic tools, particularly those
leveraging artificial intelligence and deep
learning algorithms. While some databases exist
for other cancer types [5], resources tailored
to oral cancer, especially for OSMF, remain
insufficient. This limitation complicates efforts
to enhance diagnostic accuracy, implement
automated tools, and improve patient outcomes.
Consequently, oral cancer is often diagnosed in
advanced stages, resulting in a stark decline in
survival rates, from approximately 69.5% in early
stages to 31.6% in later stages [3].

Early detection and innovative diagnostic
methods are critical to addressing these challenges.
One study demonstrated the efficacy of hybrid
models utilizing fused convolutional neural
network (CNN) features, achieving high precision
in diagnosing OSCC-100x and OSCC-400x
datasets. The best-performing model reported
an accuracy of 98.85%, significantly reducing
diagnostic errors [6]. Another study compared
the performance of VGG16 and ResNet50
architectures in analyzing histopathological
samples, with VGG16 optimized with Stochastic
Adam (SAM) achieving an accuracy of 86.22% [6].
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While these studies emphasize detection and
classification, they fall short of addressing the
generation of synthetic images, a crucial step
in augmenting data for advanced research and
diagnostics. This gap underscores the need
for techniques capable of not only enhancing
diagnostic accuracy but also reconstructing
high-quality synthetic histopathological images
to support computational and clinical research.

Multiview clustering [7], a machine-learning
paradigm, offers promising avenues for improving
classification and diagnostic accuracy in oral
cancer histopathology. This approach, widely
used in data mining and computer vision, groups
data points from multiple perspectives. Multiview
clustering, a machine-learning approach, holds
potential for enhancing classification and
diagnostic precision in oral cancer histopathology.
This method combines various approaches to
analyzing the same data, including texture,
color distribution, and spatial morphology of
tissue samples. In histopathological images,
these various perspectives represent unique
yet complementary biological characteristics,
including cellular structural organization, staining
intensity, and nuclear spatial arrangement,
among others. Conventional single-view models
often overlook this heterogeneity, leading to
suboptimal clustering and limited diagnostic
insights. In contrast, multiview integration
lets the model learn from a more complex,
multidimensional feature space. This improves its
ability to distinguish between small pathological
changes, making downstream tasks such as
tissue classification and subtype discovery more
stable. Traditional clustering methods often
employ shallow models that fail to capture
complex interconnections within heterogeneous
datasets [8]. Recent advancements propose using
graph autoencoders (GAEs) to address these
limitations. GAEs reconstruct multiple views
from a single information graph, enabling node
representations tailored to specific clusters. By
capturing complex interdependencies among
diverse data modalities, GAEs can facilitate
the identification of novel subtypes, enhance
diagnostic precision, and support personalized
treatment strategies [9].

GAEs [10] have emerged as a powerful
tool for generating synthetic histopathological
images. These models offer multiple advantages,
including data augmentation, robust feature
extraction, and improved interpretability.
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By learning the underlying structures and
relationships within histopathological images,
GAEs can model complex interactions, such as
those between cell types, tissue morphologies,
and spatial arrangements. This ability enhances
subsequent analyses and mitigates challenges
posed by limited data availability. Additionally,
GAEs are particularly adept at addressing the
heterogeneity inherent in oral cancer, learning
diverse representations within a single graph
structure [11-15].

In the context of oral cancer, GAEs can
integrate information across multiple views of
histopathological images, improving clustering
and classification accuracy. Furthermore, GAEs
mitigate overfitting and enhance dataset quality
by reconstructing synthetic images, making them
invaluable in fields where data scarcity limits
research and clinical advancements. They enable
robust feature learning by capturing relationships
between structural textures, spatial relationships,
and biological topologies, allowing for better class
separation and reducing noise [16-18]. Their
scalability and flexibility make them suitable
for large datasets while easily incorporating
new views. GAEs also support unsupervised and
semi-supervised learning, reducing dependence
on labeled data and improving generalizability.

Recent studies have demonstrated that
GAEs [19] outperform traditional methods in
terms of accuracy, robustness, and reliability,
particularly in medical image classification.
By leveraging multiview clustering with
GAEs, researchers can enhance the analysis of
histopathological images in oral cancer, improving
diagnostic accuracy and supporting personalized
treatment strategies. This study explores
multiview clustering using graph autoencoders
to reconstruct histopathological images in oral
cancer, aiming to address existing diagnostic
challenges and propose innovative solutions for
clinical and computational applications.

MATERIALS AND METHODS

Figure 1 illustrates the sequential workflow
of the study, beginning with dataset retrieval from
The Cancer Genome Atlas Head-Neck Squamous
Cell Carcinoma Collection (TCGA-HNSC) version
6, and preprocessing of histopathological images.
It highlights feature extraction using a deep
learning framework, followed by multiview
clustering with graph autoencoders. The figure
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Figure 1 - Workflow of the Study: Dataset Retrieval to Clustering Evaluation.

also includes steps for training, loss monitoring,
clustering evaluation, dimensionality reduction,
explainable AI analysis, and cluster stability
assessment, providing a comprehensive overview
of the methodology.

The following section describes the
comprehensive methodology employed in this
study, including dataset retrieval, preprocessing,
feature extraction, clustering, and evaluation
techniques. This section is divided into eight
subsections: dataset retrieval, histopathological
image preprocessing, feature extraction using
deep learning, multiview clustering with graph
autoencoders, training and loss monitoring,
clustering evaluation, dimensionality reduction,
explainable AI analysis, and cluster stability.
Each subsection provides a detailed account of
the steps and methods applied.

Dataset retrieval

Histopathological images

Using TCGA-HNSC [20] was accessed.
This comprehensive dataset includes 756
histopathological samples of head and neck
squamous cell carcinoma (HNSC).

Histopathological image preprocessing

The process of preprocessing histopathological
images involves several steps. The first step is image
resizing, a uniform size of 224x224 pixels. This
standardizes the images and preserves important
features. The pixel values are normalized to a
consistent range, preventing large values from
skewing the cost function and allowing the model

to learn more effectively. Data augmentation
techniques are applied to increase the size of the
training dataset by creating modified versions of
the images (Figure 1). The multiview setup for
histopathological images includes three feature
views: the Texture View utilizes Local Binary
Patterns and Gabor features from grayscale
images; the Morphology View analyzes cell shape
and structural features from CNN’s intermediate
layers; and the Color Intensity View extracts
histogram features from H&E channels following
color deconvolution. These views collectively
capture varied aspects of histological information
such as color variation, spatial morphology, and
structural texture.

Feature extraction using deep learning

CNN extracts features from histopathological
images. A pre-trained architecture, such as
ResNet-50 or VGG-16, is fine-tuned to enhance
the model’s performance using the specific
dataset. Several hyperparameters govern the
training process: the learning rate is set to 0.001,
indicating the step size in adjusting the weights
during optimization; the batch size is chosen to be
32, meaning that 32 images will be processed at
a time through the network; the Adam optimizer
is selected for its efficiency in training deep
learning models; and the training will run for a
total of 50 epochs, allowing the model to improve
its accuracy over multiple passes through the
dataset iteratively. The output generated from the
penultimate layer of the CNN is then taken as the
feature representation for each image, capturing
the essential characteristics derived from the data.
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Multiview clustering with graph autoencoder

We created the graph by representing each
sample as a node. Cosine distance in the feature
space was used to create the adjacency matrix A
based on k-nearest neighbor (k-NN) similarity.
We set k = 10, which means that nodes were
connected if they were in each other’s top 10
most similar samples. This guarantees local
similarity-based connectivity and maintains
both global and local relationships within the
data manifold. Multiview clustering integrates
data from various views to form a unified
representation. This study employed graph
attentional embeddings (GAEs) to leverage
structural information from graphs and distinct
features from multiple views [8,9,21,22].
Combining multiview clustering with GAEs
enables the harnessing of structural information
from graphs while leveraging the distinct
features offered by each view. The multiview
GAE framework comprises an encoder, decoder,
loss functions, and clustering process. It learns
view-specific embeddings, promotes joint
clustering, and uses regularization techniques
to prevent overfitting, especially in deep neural
networks. Graph Autoencoders’ multiview
clustering offers enhanced representation and
robustness, making it a promising avenue for
research and real-world applications in complex
multiview scenarios.

Graph autoencoders architecture

GAEs [11-13] are neural network architectures
for learning compact representations of graph-
structured data.

They consist of two main components: the
encoder and the decoder.

The encoder maps the input graph to a low-
dimensional representation using convolutional
layers while the decoder reconstructs the graph
from these embeddings.

The decoder uses a non-linear activation
function like ReLU to introduce non-linearity in
encoding. The decoder can focus on tasks like
link prediction and node classification.

GAEs are useful in node classification,
link prediction, and graph clustering locality
applications. They employ various reconstruction
approaches, such as inner product for link
prediction and graph generation models for
reconstructing new graphs. The training process
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minimizes reconstruction loss, quantifying
the difference between the original graph
structure and the reconstructed graph. The
key hyperparameters for this model include 4
clusters, a latent dimension of 128, a learning
rate of 0.0005, a duration of 100 epochs, and loss
weights set to 0.5 for reconstruction loss, 0.3 for
clustering loss, and 0.2 for contrastive Loss.

TRAINING AND LOSS MONITORING

The model is trained with reconstruction,
clustering, and contrastive losses while monitoring
loss values over epochs. Convergence occurs
when the total Loss stabilizes, usually after
100 epochs. Using PyTorch (v2.0) with CUDA
acceleration, all training procedures were carried
out. TensorBoard was used to track the total loss,
and each component (reconstruction, clustering,
and contrastive loss) was logged separately. The
early stopping criterion was not used because
convergence was consistently reached after 100
epochs.The loss weights for reconstruction (0.5),
clustering (0.3), and contrastive loss (0.2) were
chosen based on the proportions commonly used
in previous multicomponent GAE studies. We
didn’t conduct a full grid search. Still, we did
test a few combinations and selected the one that
yielded stable convergence and the best clustering
metrics, such as the silhouette score and the
Calinski-Harabasz index. These weights ensured
that the model performed well in balancing
embedding reconstruction, cluster coherence,
and representation contrast across views.

Reconstruction loss

Reconstruction loss measures how well a
model can recreate the original input from its
encoded representation, which is used to learn a
compressed data representation. Common forms
include Mean Squared Error (MSE) and Binary
Cross-Entropy for continuous and binary data.
Optimizing reconstruction loss enhances the
model’s understanding of the data’s structure.

Clustering loss

Clustering loss is a technique used to group
similar data points in a learned representation
space, enhancing the ability to identify distinct
groups. Common approaches include K-Means
Loss and Soft Clustering, which aim to ensure
similar data points are closer together for better
organization and classification.
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Contrastive loss

Contrastive Loss is a method used to minimize
the distance between similar and dissimilar
pairs of examples, enhancing the model’s ability
to discriminate between different classes or
categories by learning an embedded space where
similar items are closer together and dissimilar
ones are farther apart.

Monitoring loss values over epochs

Monitoring loss values during training helps
assess model performance, identify potential issues
like underfitting or overfitting, and determine when
to stop training if the Loss does not significantly
decrease.

Convergence

Convergence in model training refers
to the point where the total Loss stabilizes,
meaning further training won’t cause significant
changes. Stable loss values and epoch count
determine it. Combining multiple loss functions
allows models to learn richer representations,
especially in complex, high-dimensional data like
images or textual representations. This hybrid
training approach enhances performance across
various tasks.

CLUSTERING EVALUATION

The model’s clustering performance is
evaluated using metrics like Silhouette Score,
Adjusted Rand Index, and Normalized Mutual
Information, indicating robust results.

Silhouette score

The Silhouette Score measures an object’s
similarity to its cluster compared to others. It
ranges from -1 to +1, indicating well-clustering,
proximity to the decision boundary, or potential
incorrect assignment. The score is calculated
using the formula s(i) = a(i) — b(i), where a
and b are the average distances between the
two points.

Adjusted Rand Index (ARI)

ARI measures the similarity between two data
clusterings, adjusting for chance. It ranges from
-1 to +1, indicating perfect agreement, random
labeling, or negative values. It’s useful when
cluster sizes or the number of clusters varies.

Multiview clustering with graph autoencoder for
reconstructing histopathological images in oral cancer

Normalized Mutual Information (NMI)

NMI measures the agreement between two
clusters, ranging from 0 to 1. It is useful for
comparing different sizes and when the number
of clusters is different. NMI is derived from
mutual information and is used to measure the
agreement between estimated and true clusters.
Both metrics offer different perspectives on
clustering performance.

DIMENSIONALITY REDUCTION

High-dimensional embeddings are visualized
using dimensionality reduction techniques like
PCA, t-SNE, and UMAP, maintaining cluster
structure while projecting them into a 2D space.

EXPLAINABLE AI ANALYSIS

Explainable AI techniques are used to
interpret clustering results, including SHAP
analysis, cluster characteristics analysis, and
attention weights visualization from the MCGAE
model to understand the compactness and
separation of clusters.

SHAP analysis (shapley additive explanations)

SHAP is a method for interpreting machine
learning model predictions, calculating the
contribution of each feature to a particular prediction
based on cooperative game theory principles. It uses
Shapley values and additive feature attributes to
quantify the impact of a feature on the model’s
output. SHAP provides a consistent explanation,
enables understanding of feature importance, and
allows visualization of SHAP values.

Cluster characteristics analysis

Cluster characteristics analysis examines the
properties and attributes of data-formed clusters,
aiding in understanding their composition and
guiding business decisions. It involves identifying
clusters, analyzing features, generating descriptive
statistics, and visualizing characteristics across
clusters. This analysis is useful for identifying
target customer segments, anomaly detection,
and enhancing predictive models.

Attention weights visualization

Attention mechanisms are crucial in deep
learning models, particularly in natural language

Braz Dent Sci 2026, 29: e4803
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Figure 2 - Model Architecture and Flow for K-Fold Cross-Validation in Clustering Analysis.

processing and computer vision. They allow
models to focus on specific input parts for
predictions. Attention weights, computed using
context vectors, self-attention, and a dot product,
provide interpretability and enhance model
performance by focusing on relevant features.

CLUSTER STABILITY

The study uses k-fold cross-validation to
assess the stability of a clustering model on
histopathological images. The model achieves
perfect stability with an ARI of 1.0 across all folds,
providing insights into the clustering process and
data structure (Figure 2).

The figure depicts the architecture and
workflow of the clustering model employed in the
study. It outlines the application of k-fold cross-
validation to evaluate the stability of the clustering
process on histopathological images. The diagram
includes steps such as data partitioning, feature
extraction, clustering execution, and validation
across multiple folds. The model achieves an ARI
of 1.0 across all folds, signifying perfect clustering
stability. The visual representation provides
insights into the model’s ability to uncover
consistent and meaningful data structures.

RESULTS

The process involved loading contrast
enhancement, creating a tissue mask, calculating
tissue percentages, and generating a visualization
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showing good tissue coverage across all samples.
The model achieved a high silhouette score
and good cluster separation, and the study
successfully obtained perfect clustering alignment
with the original results, characterized by a high
silhouette score, a low Davies-Bouldin score,
balanced attention weights across views, and
perfectly balanced cluster sizes.

The clustering analysis of the dataset,
consisting of 756 samples, provides a robust
understanding of the underlying structures. The
visualization techniques, including PCA, t-SNE,
and UMAP, illustrate the clustering dynamics.
According to the clustering metrics, a Silhouette
Score of 0.792 indicates strong separation
between clusters, complemented by a high
Calinski-Harabasz Score of 641.435 and a low
Davies-Bouldin Score of 0.293, all of which point
towards well-defined and distinct clusters. Cluster
statistics further indicate that all clusters maintain
a balanced size, with samples evenly distributed
and consistent average distances and densities
among them, demonstrating the stability and
reliability of the clustering process.

Using the MCGAE embeddings, clustering
quality metrics enhance the understanding of
model performance, with higher silhouette
scores (0.892) and a Calinski-Harabasz Index
(2155.433) confirming effective clustering. The
uniformity in attention weights across various
views signals equitable contributions from
different data dimensions. Furthermore, the



Yadalam PK et al.

plot depicting the convergence of loss metrics
over 100 training epochs illustrates a significant
reduction in total and individual loss components,
showcasing the model’s optimization and stability
across the training process.

The model achieved an accuracy of 93.5%,
an F1 score of 89.36%, and an average precision
of 97.32%. Additionally, the model demonstrated
a low mean squared error (MSE) of 0.02 and
a high R? score of 0.95, showcasing its strong
predictive accuracy and ability to explain a
significant proportion of the variance in the data.
These metrics highlight the model’s reliability

Figure 3 - Dataset Dimensions and Data Type Representation. This
figure illustrates the dimensions of the dataset used in the study,
specifically showing the size of the data as (768, 756, 3) along
with its corresponding data type. The visualization offers insights
into the data's structure, highlighting its compatibility with the
clustering and machine learning processes used in the analysis.

Original Thumbnail

Enhanced Image

Multiview clustering with graph autoencoder for
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and effectiveness, particularly in maintaining
a balance between precision and recall while
minimizing prediction errors and maximizing
explained variance. The clustering analysis
effectively identifies compact clusters and achieves
interpretability through advanced visualization
and stability assessments, demonstrating the
machine learning model’s potential for data
analytics and decision-making.

To assess robustness, performance metrics
were averaged across five cross-validation folds.
The model’s average accuracy was 93.5% = 1.2,
its F1 score was 89.36% = 1.7, and its precision
was 97.32% = 1.1. The silhouette score was
0.892 + 0.02, and the Calinski-Harabasz Index
was 2155.43 + 87.6, indicating that the clusters
were stable and well-separated. The R? score
was 0.95 = 0.01, and the mean squared error
(MSE) was 0.020 * 0.003. These low standard
deviations across folds indicate that the model
operates consistently, with minimal variation.

Figure 3 illustrates the dimensions of the
dataset used in the study, specifically showing
the size of the data as [768, 756, 3] along with its
corresponding data type. The visualization provides
insights into the structure of the data, highlighting
its compatibility with the clustering and machine
learning processes applied in the analysis.

Figure 4 presents an annotated visualization
of tissue percentage calculations, specifically
showing a tissue coverage of 71.5% derived from
the VGG model. This highlights the efficacy of the
preprocessing step in accurately segmenting and
quantifying tissue regions in histopathological
images, ensuring robust feature extraction and
clustering.

l1ssue Mask
(71.5% tissue)

Figure 4 - Tissue Percentage Annotation Using VGG. The figure presents an annotated visualization of tissue percentage calculations,
specifically showing a tissue coverage of 71.5% derived from the VGG model. This highlights the efficacy of the preprocessing step in accurately
segmenting and quantifying tissue regions in histopathological images, ensuring robust feature extraction and clustering.
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Figure 5 presents a grid of four plots that
collectively showcase clustering analysis and
evaluation using different visualization techniques
and metrics.

PCA Visualization: This plot highlights
Principal Component 1 (PC1) and Principal
Component 2 (PC2) as significant contributors,
accounting for 41.01% and 31.79% of the
explained variance, respectively, with a total
explained variance of 72.80%. Data points are
colored by cluster membership, revealing some
overlap, but the plot provides an overview of the
dataset’s variance distribution.

t-SNE Visualization: The t-SNE plot
emphasizes local structures with tightly grouped
clusters, providing a more detailed view of cluster
separability compared to PCA. The enhanced
separation between data points suggests robust
clustering.

UMAP Visualization: This plot offers a balance
between global cluster distribution and local
structure, displaying similar grouping patterns to
the t-SNE visualization, with distinct clusters visible.
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Silhouette Analysis: The silhouette plot
displays the distribution of silhouette coefficients for
each cluster, indicating the model’s effectiveness in
clustering. It includes a red dotted line as a threshold
for assessing cluster separation. Key metrics show:
Silhouette Score: 0.792 (strong separation),
Calinski-Harabasz Score: 641.435 (well-defined
clusters), and Davies-Bouldin Score: 0.293 (good
cluster separation). Overall, these results affirm
the robustness of the model and highlight the
dataset’s relationships. Cluster statistics show
that Cluster 0 has 25 samples, with an average
distance to the center of 1.217 and a density of
1.685. Cluster 1 has a distance of 1.247 and a
density of 1.731, while Cluster 2 has a distance
of 1.195 and 1.657.

Figure 6 shows the Feature Correlation
Heatmap and Cluster Statistics Summary. This
Figure illustrates the Feature Correlation Heatmap,
avisual representation of the relationships between
variables in the dataset, along with summarized
Cluster Statistics. The heatmap utilizes a color
gradient that ranges from red (positive correlation)
to blue (negative correlation). Indices (0 to 31) are

t-SNE Visualization
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Figure 5 - Clustering Analysis Grid: PCA, t-SNE, UMAP, and Silhouette Analysis, and shows the grid of four plots that collectively showcase
clustering analysis and evaluation using different visualization techniques and metrics.
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Feature Correlation Heatmap
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Figure 6 - Feature Correlation Heatmap and Cluster Statistics Summary.

displayed along both the x and y axes, representing
features. Dark red diagonal elements indicate
perfect positive correlations [self-correlation],
while off-diagonal elements show a mix of
positive and negative values, reflecting complex
inter-feature relationships. This visualization
is instrumental in evaluating multicollinearity,
guiding feature selection, and understanding the
underlying data structure.

Cluster Statistics Summary: Cluster O contains
25 samples with an average distance to the center
of 1.217 and a density of 1.685. Cluster 1 has a
distance of 1.247 and a density of 1.731. Cluster
2 has a distance of 1.195 and a density of 1.657.
The clusters exhibit balanced sizes, consistent
distances, and similar densities, indicating a
well-formed clustering structure. These results
highlight the success of the clustering process,
achieving size balance, clear separation, and high
density across clusters. Dimensionality reduction
techniques further validate the clustering quality
by demonstrating clear relationships between
features and robust cluster formation.

Cluster profiles

Cluster 0 has 25 distinct features, Cluster
1 has 19 unique features, Cluster 2 has 11 unique
features, and Cluster 3 has 25 unique features.

- 0.25

- 0.00

- -0.25

-0.50

-0.75

Each cluster’s top 5 distinctive features vary
significantly, with the top 5 being 2.213, 2.276,
2.2152, and 2.047 units.

Figure 7 shows the cluster Profiles and
Insights from MCGAE Embeddings and View
Attention Weights, which illustrate three distinct
visualizations that provide a comprehensive
understanding of clustering analysis using
MCGAE embeddings.

MCGAE embeddings scatter plot:

This plot highlights the distribution of
samples, with data points color-coded according
to their cluster membership. Clusters are
visually distinct, with data points of the same
color closely grouped, while different colors
represent separated clusters. This demonstrates
the MCGAE'’s effectiveness in reconstructive
embeddings that capture the clustering structure.

Cluster profiles summary:

Cluster 0 contains 25 unique features, Cluster
1 has 19, Cluster 2 has 11, and Cluster 3 contains
25 unique features. Each cluster’s top five distinctive
features exhibit significant variation, with values
ranging from 2.047 to 2.276 units, highlighting the
diverse characteristics of the clusters.
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View attention weights bar plot:

The bar plot illustrates uniform attention
weights across views, with each view contributing
approximately 0.30 to the overall clustering
process. This balanced attention allocation
indicates that all data views are equally important,
enhancing the robustness and interpretability
of the clustering results. These visualizations
collectively demonstrate the MCGAE model’s
capability to generate well-defined clusters,
balanced contributions from data views, and
unique feature profiles within each cluster.

MCGAE Embeddings

3.0

View Attention Weights

Multiview clustering with graph autoencoder for
reconstructing histopathological images in oral cancer

Cluster sizes

The bar plot shows cluster sizes, each
containing approximately 25 samples. The
equal distribution across clusters suggests a
well-balanced group, with no cluster being
significantly larger or smaller than the others.

Figure 8 shows the evaluation of Clustering
Quality and Metrics Using MCGAE Embeddings and
displays a grid containing four sections that showcase
various metrics and visualizations about a clustering
analysis conducted using MCGAE [Multiview
Contrastive Graph Autoencoder] embeddings.
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Figure 7 - Cluster Profiles and Insights from MCGAE Embeddings and View Attention Weights.
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Figure 8 - Evaluation of Clustering Quality and Metrics Using MCGAE Embeddings.
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Clustering quality metrics:

The silhouette score of 0.892, the Calinski-
Harabasz Index of 2.155, and the Davies-Bouldin
Index of 0.151 are reported as key metrics for
assessing the quality of clustering.

These metrics suggest effective clustering
performance, with the high silhouette score and
Calinski-Harabasz Index indicating strong cluster
cohesion and separation.

Attention weights of the clusters:

This section visualizes the attention weights
across clusters, showcasing how the model
allocates focus across different views. This helps
to understand the contribution of each view to
the overall clustering.

Cluster size distribution:

The bar plot demonstrates an even distribution
of samples across clusters, with each cluster
containing approximately 25 samples.

This indicates balanced group sizes, suggesting
that the clustering approach did not favor any
specific cluster, supporting the robustness of the
model’s performance.

Clustering comparison metrics:

The comparison metrics reveal an optimal
agreement score of 1.000, indicating that the

Multiview clustering with graph autoencoder for
reconstructing histopathological images in oral cancer

clustering results perfectly match the true labels.
This confirms the effectiveness of the MCGAE
approach in accurately grouping samples.

Clustering visualizations

The MCGAE clustering plot shows clear
cluster separations, demonstrating the algorithm’s
effectiveness. The original clustering plot compares
the clusters’ relation to the original data’s structure,
demonstrating the effectiveness of the clustering
algorithm. The clustering results demonstrate
strong performance, with effective clustering
evident in both metrics and visualizations.
Balancing cluster sizes and attention weights
suggests a well-balanced approach.

Figure 9 illustrates the epoch loss curve of
the MCGAE model across 100 epochs. The plot
showcases the convergence of different loss
components, each represented by a distinct color.
Total Loss (Blue): Displays a significant reduction
from approximately 0.32 to 0.026, indicating
overall convergence of the model and effective
training progress.Reconstruction Loss (Orange):
Shows a steady decline from approximately
0.095 to 0.014, indicating improvements in the
model’s reconstruction quality and its ability to
reconstruct input data accurately. Clustering Loss
(Green): Initially experiences a slight increase,
followed by a steady decrease to approximately
0.003. This indicates stable cluster assignments
and a well-learned clustering representation.

Loss Trends Over Epochs

2.0 1

1.5:9

Loss

1.0 4

0.5 1

—8— Total Loss

-o— Reconstruction Loss
—8— Clustering Loss
—e— Contrastive Loss
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20 40

60 80 100

Epochs

Figure 9 - Model Convergence Analysis: Epoch Loss Curve of the MCGAE Model.
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Contrastive Loss [Red]: Demonstrates the
most substantial relative decrease, from about
2.23 t0 0.12, highlighting successful alignment of
different views and the model’s effective learning
of feature relationships. The model’s initial
decline in the first 30 epochs, followed by gradual
stabilization, demonstrates efficient learning,
convergence, and consistent improvement in all
loss components throughout the training process.

Figure 10 presents four plots illustrating the
progression of different loss metrics over training
epochs for a machine learning model. Total Loss
(Top Left): Displays a steady decline over epochs,
indicating overall performance improvement. The
logarithmic plot shows higher initial values that
decrease as training progresses, demonstrating
successful optimization. Reconstruction Loss
(Top Right): Shows a significant reduction in
the initial epochs, with stabilization towards
the end. This suggests that the model effectively
learns to reconstruct input data over time,
indicating strong performance. Clustering Loss
(Bottom Left): Exhibits early erratic behavior,
with a slight increase followed by a steady
decrease after 40 epochs. This pattern suggests
initial instability, which improves as training

Total Loss

Multiview clustering with graph autoencoder for
reconstructing histopathological images in oral cancer

advances, highlighting enhanced model clustering
capabilities. Contrastive Loss (Bottom Right):
Demonstrates a consistent decrease across
epochs, indicating improved differentiation
between classes or instances. The sharp reduction
in loss suggests that effective model adjustments
are being made for improved learning.

Convergence analysis

The convergence analysis revealed a total
loss reduction of 91.76%, a reconstruction loss
reduction of 85.28%, a clustering loss reduction
of 84.95%, and a contrastive loss reduction of
94.61%. The study reveals strong convergence in
all loss components over training epochs, with the
highest reduction in contrastive Loss (94.61%).
Overall model optimization and similar reduction
rates were observed. The model demonstrates
stable and consistent convergence across all
components, with no signs of overfitting or
instability during training.

Figure 11 illustrates a reconstructed image
generated by the multiview clustering-based
graph autoencoders. The image demonstrates
the model’s ability to accurately reconstruct input

Reconstruction Loss

Loss.

6x1072

20 40 60 80 100
Epochs

Clustering Loss

20 a0 60 80 100
Epochs

Contrastive Loss

Loss.
1

Loss

20 40 60 80 100
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20 a0 60 80 100
Epochs

Figure 10 - Training Epoch Analysis: Loss Metrics for the Machine Learning Model.
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data, reflecting the effectiveness of the learned
representations from the clustering and feature
extraction process. The visual highlights how well
the model captures and reconstructs significant
patterns within the data.

Explainable Al

Figure 12 presents a visualization illustrating
feature importance and SHAP [Shapley Additive
Explanations] interaction values for a machine
learning model, highlighting the model’s
interpretability and transparency.

Multiview clustering with graph autoencoder for
reconstructing histopathological images in oral cancer

Feature Importance: This section of the
figure visualizes the importance of four features,
with Feature 2 showing the highest importance
and Feature O being the least significant. This
helps in identifying which features contribute
most to the model’s predictions.

SHAP Interaction Values: The SHAP interaction
values capture the interactions between features,
ranging from -0.02 to 0.025. These values help to
uncover complex relationships and dependencies
between features, supporting model interpretation
and guiding feature selection. Notably, negative

Figure 11 - The reconstructed image from Multiview Clustering-Based Graph Autoencoders illustrates a reconstructed image generated
by the multiview clustering-based graph autoencoder. The image demonstrates the model's ability to accurately reconstruct input data,
reflecting the effectiveness of the learned representations from the clustering and feature extraction process. The reconstructed image
preserves essential structural characteristics from the original input, demonstrating effective encoding and decoding, and reconstructs

significant patterns within the data.

Explainable Al
Feature 0
Feature 0 I I |
Feature 3 | I |
Feature 2 | ' H
Feature 1 ll | | |

Feature 3

Feature 2SHAP Feature Importance

—OA'OZBAOIOOO.C;ZS —n.bzn.oom.dzs —o.bza.oom.dzs —0.’02&0‘0“10‘25

SHAP interaction value

Figure 12 - Feature Importance and SHAP Interaction Values Visualization for Model Explainability presents a visualization that illustrates feature
importance and SHAP interaction values for a machine learning model, thereby highlighting the model's interpretability and transparency.
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Figure 13 - Feature Significance, Cluster Stability, and Attention Analysis in MCGAE Embeddings.

interaction values between Feature 0 and Feature
3 indicate a suppressive relationship.

Figure 13 illustrates key insights from the
analysis of the model’s performance and feature
contributions.

Top Five Significant Features: The most
important features, measured by their contribution
to the model’s output, are ranked at 0.0275,
0.0280, 0.0290, 0.0320, and 0.0330. This indicates
the features most critical for accurate predictions.

Cluster Stability: The cluster stability score
yields a mean of 1.0000 with a standard deviation
of 0.0000, indicating perfect consistency in
cluster assignments across cross-validation folds,
which reinforces the model’s robustness.

Attention Analysis: The analysis of attention
weights across View 1, View 2, and View 3
reveals that attention is nearly evenly distributed,
indicating a balanced importance among the
views in shaping the final representations. This
confirms that the model equally prioritizes
different perspectives, contributing to a well-
rounded and stable feature extraction.

DISCUSSION

Oral cancers, primarily squamous cell
carcinomas, are the sixth most common malignancy
worldwide, accounting for over 400,000 new cases
annually, with a significant prevalence in Asia. These
cancers have a poor prognosis and high diagnostic

delays, underscoring the importance of prevention
through education and lifestyle changes, alongside
targeted screening for high-risk groups. A recent
study employed a centered rule image-capturing
approach to collect oral cavity images for cancer
detection [1,23,24]. The HRNet deep learning
network demonstrated high sensitivity, specificity,
and precision in smartphone-based primary
diagnosis. Similarly, an Al model for detecting oral
cancer and dysplastic leukoplakia using single-lens
reflex cameras exhibited high sensitivity, negative
predictive value, and specificity [25].

In another study, a set of 1,000 synthetic
hepatocellular carcinoma images was generated,
evaluated by three radiologists, and scored
0.64 for realism and consistency [21]. This
demonstrates the feasibility of creating realistic
MR images with minimal training data by utilizing
available liver backgrounds. This approach
aligns with our study’s findings, which show
that histopathological images were generated
with an accuracy of 93.5%. Moreover, a prior
study employed CGGA, a graph autoencoder
method, to generate omic-specific features,
similarity, and consensus matrices for cancer
subtyping. This method outperformed other
clustering algorithms and multi-omics integrative
approaches, identifying clinically relevant cancer
subtypes. These results align with the present
study, which utilized graph autoencoders for
multi-clustering and histopathological image
generation [6,22,26-28].

Braz Dent Sci 2026, 29: e4803

15



Yadalam PK et al.

Another innovative framework, MSVGAE,
was previously introduced for the analysis of
scRNA-seq data. It utilized a variational graph
autoencoder and graph attention networks to
learn features at multiple scales, effectively
handling uninformative data. The model captured
complex posterior distributions and successfully
mapped high-dimensional data into a low-
dimensional latent space [9]. Similarly, this
study utilized contrast enhancement, tissue mask
creation, and tissue percentage calculations to
develop tissue masks. The results demonstrated
excellent performance, achieving perfect
clustering alignment and balanced attention
weights across views. Analysis of 756 samples
revealed strong separation between clusters,
balanced cluster sizes, and stability. The model
achieved 93.5% accuracy, an F1 score of 89.36%,
and an average precision of 97.32%. Additionally,
the model exhibited low MSE and a high R? score,
showecasing its predictive accuracy and its ability
to explain significant data variance. These results
highlight the machine learning model’s potential
for advanced data analytics and decision-making.

This study has a few limitations. First, there
were no baseline comparisons with standard
clustering or dimensionality reduction techniques
(e.g., K-means, PCA), making it impossible to
compare performance directly. Second, statistical
variability measures, such as mean *+ SD, were
not provided, and the loss weights were selected
based on experience rather than through formal
optimization. Additionally, the ARI and NMI
metrics relied on artificial ground-truth labels
from the dataset, which may not fully represent
biological variability. The model was evaluated
using a single curated dataset, and its applicability
to real clinical situations has yet to be confirmed.
Therefore, while the results are promising,
further external validation and clinical studies
are necessary to assess translational readiness.

Future directions for the MSVGAE model
include diversifying datasets, incorporating
longitudinal and clinical data, refining loss functions,
enhancing visualization techniques, and building
trust in clinical applications through the use of
explainable Al. Expanding the dataset diversity
and incorporating longitudinal samples will likely
improve the model’s generalizability and robustness
for oral cancer diagnostics [28-30]. Despite its
strengths, the multiview graph autoencoder has
limitations. Its performance is heavily dependent
on high-quality data, and variations in staining

Multiview clustering with graph autoencoder for
reconstructing histopathological images in oral cancer

protocols and imaging conditions can introduce
biases. Scalability to larger datasets poses
challenges due to the demands on computational
resources. Furthermore, the model’s interpretability
remains limited compared to traditional methods.
The assumption of homogeneous clusters may
not hold for all biological complexities, and its
static clustering approach limits adaptability.
Additionally, the exploration of hyperparameters
remains underdeveloped.

CONCLUSIONS

Multiview graph autoencoders signify a
promising avenue for advancing the analysis
of histopathological images in oral cancer. This
method combines different feature representations
from various views, which can aid in clustering
and image reconstruction. This could lead to better
diagnostic workflows in the future. Our results
demonstrate that this framework is technically
feasible and performs well with a controlled dataset.
We recognize, however, that additional validation
is necessary before clinical implementation. This
entails testing on larger, more diverse datasets,
evaluating generalizability across various imaging
platforms, and collaborating with pathologists to
determine the diagnostic utility. This study lays the
groundwork for future research in Al-driven digital
pathology for oral cancer diagnostics, although it
is not yet suitable for clinical application.
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