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ABSTRACT
Objective: Early detection is critical for accurately diagnosing and effectively treating oral squamous cell 
carcinoma, particularly in regions like Southeast Asia where the prevalence is high. Multiview clustering and 
graph autoencoders (GAEs) hold promise for enhancing classification and diagnostic accuracy in oral cancer 
histopathological images. This study explores multiview clustering with graph autoencoders (MCGAE) for 
reconstructing and analyzing histopathological images in oral cancer. Material and Methods: The Cancer 
Genome Atlas Head-Neck Squamous Cell Carcinoma Collection serves as a comprehensive dataset, encompassing 
histopathological images from 756 head and neck squamous cell carcinoma samples. Image preprocessing 
involves resizing to preserve critical features, feature extraction using pre-trained deep learning architectures, 
and multiview clustering with GAEs to enhance clustering performance by integrating data from various views. 
The training process optimizes the model using reconstruction loss, clustering loss, and contrastive loss, achieving 
convergence when the total loss stabilizes after 100 epochs. Clustering analysis of the dataset reveals strong 
separation between clusters, as evidenced by high Calinski-Harabasz and Davies-Bouldin scores. Results: The 
model’s performance, enhanced by MCGAE embeddings, is demonstrated through higher silhouette scores and 
a superior Calinski-Harabasz Index. The MCGAE model achieves an accuracy of 93.5%, an F1 score of 89.36%, 
and an average precision of 97.32%. Furthermore, the low Mean Squared Error and high R2 score underscore the 
model’s reliability and effectiveness in striking a balance between precision and recall. Conclusion: Multiview 
GAEs enhance histopathological diagnoses by reducing diagnostic errors and variability, promoting continuous 
learning, and streamlining diagnostic workflows.
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RESUMO
Objetivo: A detecção precoce é fundamental para o diagnóstico preciso e o tratamento eficaz do carcinoma 
espinocelular oral, especialmente em regiões como o Sudeste Asiático, onde a prevalência é alta. O agrupamento 
de múltiplas visualizações e os autoencoders gráficos (GAEs), oferecem avanços promissores para melhorar a 
classificação e a precisão do diagnóstico em imagens histopatológicas de câncer oral. Este estudo explora o 
agrupamento multiview com autoencoders gráficos (MCGAE) para gerar e analisar imagens histopatológicas de 
câncer bucal. Material e Métodos: A Coleção de Carcinoma de Células Escamosas de Cabeça e Pescoço do Atlas 
do Genoma do Câncer serve como um conjunto de dados abrangente, englobando imagens histopatológicas de 
756 amostras de carcinoma de células escamosas de cabeça e pescoço. O pré-processamento de imagens envolve o 
redimensionamento para preservar recursos essenciais, a extração de recursos usando arquiteturas de aprendizagem 
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profunda pré-treinadas e o agrupamento de múltiplas visualizações com GAEs para aprimorar o desempenho do 
agrupamento integrando dados de várias visualizações. O processo de treinamento otimiza o modelo usando a 
perda de reconstrução, a perda de agrupamento e a perda contrastiva, alcançando a convergência quando a perda 
total se estabiliza após 100 épocas. A análise de agrupamento do conjunto de dados revela uma forte separação 
entre os agrupamentos, conforme evidenciado pelas altas pontuações de Calinski-Harabasz e Davies-Bouldin. 
Resultados: O desempenho do modelo, aprimorado pelas incorporações do MCGAE, é demonstrado por meio 
de pontuações de silhueta mais altas e um índice Calinski-Harabasz superior. O modelo MCGAE atinge uma 
precisão de 93,5%, uma pontuação F1 de 89,36% e uma precisão média de 97,32%. Além disso, o baixo erro 
quadrático médio e a alta pontuação R2 destacam a confiabilidade e a eficácia do modelo no equilíbrio entre 
precisão e recuperação. Conclusão: Os GAEs multiview aprimoram os diagnósticos histopatológicos reduzindo 
os erros de diagnóstico e a variabilidade, promovendo o aprendizado contínuo e simplificando os fluxos de 
trabalho de diagnóstico.

PALAVRAS-CHAVE 
Aprendizagem profunda; Histopatologia; Agrupamento de múltiplas visualizações; Câncer oral; Imagens 
histopatológicas sintéticas.

INTRODUCTION

Oral cancer, also known as oral cavity 
cancer, is a global health issue that affects various 
structures within the mouth, including the lips, 
tongue, cheeks, floor of the mouth, hard and 
soft palates, and the oropharynx [1]. It ranks as 
the sixth most common cancer worldwide, with 
over 300,000 new cases diagnosed annually. This 
disease is associated with numerous risk factors, 
including tobacco use, alcohol consumption, 
human papillomavirus (HPV) strains, poor oral 
hygiene, advanced age, gender predispositions, 
and immune system disorders [2]. Its symptoms 
include persistent sores, gum patches, oral pain, 
and speech difficulties. Early detection is pivotal 
for accurate diagnosis and improved treatment 
outcomes. Treatments for oral cancer include 
surgery, radiation therapy, chemotherapy, 
targeted therapy, and immunotherapy. Prevention 
strategies such as public health campaigns, 
vaccination against HPV, and regular dental 
screenings can significantly reduce incidence 
rates and improve early detection [3].

Despite advancements in treatment 
modalities, the disease burden remains substantial, 
particularly in low- and middle-income countries 
where access to healthcare is limited. The delay 
in diagnosis, coupled with high-risk behavioral 
practices, exacerbates morbidity and mortality 
rates. The need for innovative diagnostic 
approaches is increasingly urgent.

Oral squamous cell carcinoma (OSCC), 
a predominant form of oral cancer, poses 
a significant health concern, especially in 

Southeast Asia, where the widespread use of 
tobacco and betel quid is a major contributing 
factor. Current diagnostic methods, including 
clinical examination, imaging, and biopsy, face 
inherent limitations. These include difficulty 
distinguishing between oral submucous fibrosis 
(OSMF) and early-stage OSCC and a scarcity of 
skilled histopathologists [4]. Moreover, the lack 
of well-annotated histology image databases 
for oral diseases hinders the development of 
advanced diagnostic tools, particularly those 
leveraging artificial intelligence and deep 
learning algorithms. While some databases exist 
for other cancer types [5], resources tailored 
to oral cancer, especially for OSMF, remain 
insufficient. This limitation complicates efforts 
to enhance diagnostic accuracy, implement 
automated tools, and improve patient outcomes. 
Consequently, oral cancer is often diagnosed in 
advanced stages, resulting in a stark decline in 
survival rates, from approximately 69.5% in early 
stages to 31.6% in later stages [3].

Early detection and innovative diagnostic 
methods are critical to addressing these challenges. 
One study demonstrated the efficacy of hybrid 
models utilizing fused convolutional neural 
network (CNN) features, achieving high precision 
in diagnosing OSCC-100x and OSCC-400x 
datasets. The best-performing model reported 
an accuracy of 98.85%, significantly reducing 
diagnostic errors [6]. Another study compared 
the performance of VGG16 and ResNet50 
architectures in analyzing histopathological 
samples, with VGG16 optimized with Stochastic 
Adam (SAM) achieving an accuracy of 86.22% [6]. 
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While these studies emphasize detection and 
classification, they fall short of addressing the 
generation of synthetic images, a crucial step 
in augmenting data for advanced research and 
diagnostics. This gap underscores the need 
for techniques capable of not only enhancing 
diagnostic accuracy but also reconstructing 
high-quality synthetic histopathological images 
to support computational and clinical research.

Multiview clustering [7], a machine-learning 
paradigm, offers promising avenues for improving 
classification and diagnostic accuracy in oral 
cancer histopathology. This approach, widely 
used in data mining and computer vision, groups 
data points from multiple perspectives. Multiview 
clustering, a machine-learning approach, holds 
potential for enhancing classification and 
diagnostic precision in oral cancer histopathology. 
This method combines various approaches to 
analyzing the same data, including texture, 
color distribution, and spatial morphology of 
tissue samples. In histopathological images, 
these various perspectives represent unique 
yet complementary biological characteristics, 
including cellular structural organization, staining 
intensity, and nuclear spatial arrangement, 
among others. Conventional single-view models 
often overlook this heterogeneity, leading to 
suboptimal clustering and limited diagnostic 
insights. In contrast, multiview integration 
lets the model learn from a more complex, 
multidimensional feature space. This improves its 
ability to distinguish between small pathological 
changes, making downstream tasks such as 
tissue classification and subtype discovery more 
stable. Traditional clustering methods often 
employ shallow models that fail to capture 
complex interconnections within heterogeneous 
datasets [8]. Recent advancements propose using 
graph autoencoders (GAEs) to address these 
limitations. GAEs reconstruct multiple views 
from a single information graph, enabling node 
representations tailored to specific clusters. By 
capturing complex interdependencies among 
diverse data modalities, GAEs can facilitate 
the identification of novel subtypes, enhance 
diagnostic precision, and support personalized 
treatment strategies [9].

GAEs [10] have emerged as a powerful 
tool for generating synthetic histopathological 
images. These models offer multiple advantages, 
including data augmentation, robust feature 
extraction, and improved interpretability. 

By learning the underlying structures and 
relationships within histopathological images, 
GAEs can model complex interactions, such as 
those between cell types, tissue morphologies, 
and spatial arrangements. This ability enhances 
subsequent analyses and mitigates challenges 
posed by limited data availability. Additionally, 
GAEs are particularly adept at addressing the 
heterogeneity inherent in oral cancer, learning 
diverse representations within a single graph 
structure [11-15].

In the context of oral cancer, GAEs can 
integrate information across multiple views of 
histopathological images, improving clustering 
and classification accuracy. Furthermore, GAEs 
mitigate overfitting and enhance dataset quality 
by reconstructing synthetic images, making them 
invaluable in fields where data scarcity limits 
research and clinical advancements. They enable 
robust feature learning by capturing relationships 
between structural textures, spatial relationships, 
and biological topologies, allowing for better class 
separation and reducing noise [16-18]. Their 
scalability and flexibility make them suitable 
for large datasets while easily incorporating 
new views. GAEs also support unsupervised and 
semi-supervised learning, reducing dependence 
on labeled data and improving generalizability.

Recent studies have demonstrated that 
GAEs [19] outperform traditional methods in 
terms of accuracy, robustness, and reliability, 
particularly in medical image classification. 
By leveraging multiview clustering with 
GAEs, researchers can enhance the analysis of 
histopathological images in oral cancer, improving 
diagnostic accuracy and supporting personalized 
treatment strategies. This study explores 
multiview clustering using graph autoencoders 
to reconstruct histopathological images in oral 
cancer, aiming to address existing diagnostic 
challenges and propose innovative solutions for 
clinical and computational applications.

MATERIALS AND METHODS

Figure 1 illustrates the sequential workflow 
of the study, beginning with dataset retrieval from 
The Cancer Genome Atlas Head-Neck Squamous 
Cell Carcinoma Collection (TCGA-HNSC) version 
6, and preprocessing of histopathological images. 
It highlights feature extraction using a deep 
learning framework, followed by multiview 
clustering with graph autoencoders. The figure 
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also includes steps for training, loss monitoring, 
clustering evaluation, dimensionality reduction, 
explainable AI analysis, and cluster stability 
assessment, providing a comprehensive overview 
of the methodology.

The following section describes the 
comprehensive methodology employed in this 
study, including dataset retrieval, preprocessing, 
feature extraction, clustering, and evaluation 
techniques. This section is divided into eight 
subsections: dataset retrieval, histopathological 
image preprocessing, feature extraction using 
deep learning, multiview clustering with graph 
autoencoders, training and loss monitoring, 
clustering evaluation, dimensionality reduction, 
explainable AI analysis, and cluster stability. 
Each subsection provides a detailed account of 
the steps and methods applied.

Dataset retrieval

Histopathological images

Using TCGA-HNSC [20] was accessed. 
This comprehensive dataset includes 756 
histopathological samples of head and neck 
squamous cell carcinoma (HNSC).

Histopathological image preprocessing

The process of preprocessing histopathological 
images involves several steps. The first step is image 
resizing, a uniform size of 224x224 pixels. This 
standardizes the images and preserves important 
features. The pixel values are normalized to a 
consistent range, preventing large values from 
skewing the cost function and allowing the model 

to learn more effectively. Data augmentation 
techniques are applied to increase the size of the 
training dataset by creating modified versions of 
the images (Figure 1). The multiview setup for 
histopathological images includes three feature 
views: the Texture View utilizes Local Binary 
Patterns and Gabor features from grayscale 
images; the Morphology View analyzes cell shape 
and structural features from CNN’s intermediate 
layers; and the Color Intensity View extracts 
histogram features from H&E channels following 
color deconvolution. These views collectively 
capture varied aspects of histological information 
such as color variation, spatial morphology, and 
structural texture.

Feature extraction using deep learning

CNN extracts features from histopathological 
images. A pre-trained architecture, such as 
ResNet-50 or VGG-16, is fine-tuned to enhance 
the model’s performance using the specific 
dataset. Several hyperparameters govern the 
training process: the learning rate is set to 0.001, 
indicating the step size in adjusting the weights 
during optimization; the batch size is chosen to be 
32, meaning that 32 images will be processed at 
a time through the network; the Adam optimizer 
is selected for its efficiency in training deep 
learning models; and the training will run for a 
total of 50 epochs, allowing the model to improve 
its accuracy over multiple passes through the 
dataset iteratively. The output generated from the 
penultimate layer of the CNN is then taken as the 
feature representation for each image, capturing 
the essential characteristics derived from the data.

Figure 1 - Workflow of the Study: Dataset Retrieval to Clustering Evaluation.
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Multiview clustering with graph autoencoder

We created the graph by representing each 
sample as a node. Cosine distance in the feature 
space was used to create the adjacency matrix A 
based on k-nearest neighbor (k-NN) similarity. 
We set k = 10, which means that nodes were 
connected if they were in each other’s top 10 
most similar samples. This guarantees local 
similarity-based connectivity and maintains 
both global and local relationships within the 
data manifold. Multiview clustering integrates 
data from various views to form a unified 
representation. This study employed graph 
attentional embeddings (GAEs) to leverage 
structural information from graphs and distinct 
features from multiple views [8,9,21,22]. 
Combining multiview clustering with GAEs 
enables the harnessing of structural information 
from graphs while leveraging the distinct 
features offered by each view. The multiview 
GAE framework comprises an encoder, decoder, 
loss functions, and clustering process. It learns 
view-specific embeddings, promotes joint 
clustering, and uses regularization techniques 
to prevent overfitting, especially in deep neural 
networks. Graph Autoencoders’ multiview 
clustering offers enhanced representation and 
robustness, making it a promising avenue for 
research and real-world applications in complex 
multiview scenarios.

Graph autoencoders architecture

GAEs [11-13] are neural network architectures 
for learning compact representations of graph-
structured data.

They consist of two main components: the 
encoder and the decoder.

The encoder maps the input graph to a low-
dimensional representation using convolutional 
layers while the decoder reconstructs the graph 
from these embeddings.

The decoder uses a non-linear activation 
function like ReLU to introduce non-linearity in 
encoding. The decoder can focus on tasks like 
link prediction and node classification.

GAEs are useful in node classification, 
link prediction, and graph clustering locality 
applications. They employ various reconstruction 
approaches, such as inner product for link 
prediction and graph generation models for 
reconstructing new graphs. The training process 

minimizes reconstruction loss, quantifying 
the difference between the original graph 
structure and the reconstructed graph. The 
key hyperparameters for this model include 4 
clusters, a latent dimension of 128, a learning 
rate of 0.0005, a duration of 100 epochs, and loss 
weights set to 0.5 for reconstruction loss, 0.3 for 
clustering loss, and 0.2 for contrastive Loss.

TRAINING AND LOSS MONITORING

The model is trained with reconstruction, 
clustering, and contrastive losses while monitoring 
loss values over epochs. Convergence occurs 
when the total Loss stabilizes, usually after 
100 epochs. Using PyTorch (v2.0) with CUDA 
acceleration, all training procedures were carried 
out. TensorBoard was used to track the total loss, 
and each component (reconstruction, clustering, 
and contrastive loss) was logged separately. The 
early stopping criterion was not used because 
convergence was consistently reached after 100 
epochs.The loss weights for reconstruction (0.5), 
clustering (0.3), and contrastive loss (0.2) were 
chosen based on the proportions commonly used 
in previous multicomponent GAE studies. We 
didn’t conduct a full grid search. Still, we did 
test a few combinations and selected the one that 
yielded stable convergence and the best clustering 
metrics, such as the silhouette score and the 
Calinski-Harabasz index. These weights ensured 
that the model performed well in balancing 
embedding reconstruction, cluster coherence, 
and representation contrast across views.

Reconstruction loss

Reconstruction loss measures how well a 
model can recreate the original input from its 
encoded representation, which is used to learn a 
compressed data representation. Common forms 
include Mean Squared Error (MSE) and Binary 
Cross-Entropy for continuous and binary data. 
Optimizing reconstruction loss enhances the 
model’s understanding of the data’s structure.

Clustering loss

Clustering loss is a technique used to group 
similar data points in a learned representation 
space, enhancing the ability to identify distinct 
groups. Common approaches include K-Means 
Loss and Soft Clustering, which aim to ensure 
similar data points are closer together for better 
organization and classification.
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Contrastive loss

Contrastive Loss is a method used to minimize 
the distance between similar and dissimilar 
pairs of examples, enhancing the model’s ability 
to discriminate between different classes or 
categories by learning an embedded space where 
similar items are closer together and dissimilar 
ones are farther apart.

Monitoring loss values over epochs

Monitoring loss values during training helps 
assess model performance, identify potential issues 
like underfitting or overfitting, and determine when 
to stop training if the Loss does not significantly 
decrease.

Convergence

Convergence in model training refers 
to the point where the total Loss stabilizes, 
meaning further training won’t cause significant 
changes. Stable loss values and epoch count 
determine it. Combining multiple loss functions 
allows models to learn richer representations, 
especially in complex, high-dimensional data like 
images or textual representations. This hybrid 
training approach enhances performance across 
various tasks.

CLUSTERING EVALUATION

The model’s clustering performance is 
evaluated using metrics like Silhouette Score, 
Adjusted Rand Index, and Normalized Mutual 
Information, indicating robust results.

Silhouette score

The Silhouette Score measures an object’s 
similarity to its cluster compared to others. It 
ranges from -1 to +1, indicating well-clustering, 
proximity to the decision boundary, or potential 
incorrect assignment. The score is calculated 
using the formula s(i) = a(i) – b(i), where a 
and b are the average distances between the 
two points.

Adjusted Rand Index (ARI)

ARI measures the similarity between two data 
clusterings, adjusting for chance. It ranges from 
-1 to +1, indicating perfect agreement, random 
labeling, or negative values. It’s useful when 
cluster sizes or the number of clusters varies.

Normalized Mutual Information (NMI)

NMI measures the agreement between two 
clusters, ranging from 0 to 1. It is useful for 
comparing different sizes and when the number 
of clusters is different. NMI is derived from 
mutual information and is used to measure the 
agreement between estimated and true clusters. 
Both metrics offer different perspectives on 
clustering performance.

DIMENSIONALITY REDUCTION

High-dimensional embeddings are visualized 
using dimensionality reduction techniques like 
PCA, t-SNE, and UMAP, maintaining cluster 
structure while projecting them into a 2D space.

EXPLAINABLE AI ANALYSIS

Explainable AI techniques are used to 
interpret clustering results, including SHAP 
analysis, cluster characteristics analysis, and 
attention weights visualization from the MCGAE 
model to understand the compactness and 
separation of clusters.

SHAP analysis (shapley additive explanations)

SHAP is a method for interpreting machine 
learning model predictions, calculating the 
contribution of each feature to a particular prediction 
based on cooperative game theory principles. It uses 
Shapley values and additive feature attributes to 
quantify the impact of a feature on the model’s 
output. SHAP provides a consistent explanation, 
enables understanding of feature importance, and 
allows visualization of SHAP values.

Cluster characteristics analysis

Cluster characteristics analysis examines the 
properties and attributes of data-formed clusters, 
aiding in understanding their composition and 
guiding business decisions. It involves identifying 
clusters, analyzing features, generating descriptive 
statistics, and visualizing characteristics across 
clusters. This analysis is useful for identifying 
target customer segments, anomaly detection, 
and enhancing predictive models.

Attention weights visualization

Attention mechanisms are crucial in deep 
learning models, particularly in natural language 
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processing and computer vision. They allow 
models to focus on specific input parts for 
predictions. Attention weights, computed using 
context vectors, self-attention, and a dot product, 
provide interpretability and enhance model 
performance by focusing on relevant features.

CLUSTER STABILITY

The study uses k-fold cross-validation to 
assess the stability of a clustering model on 
histopathological images. The model achieves 
perfect stability with an ARI of 1.0 across all folds, 
providing insights into the clustering process and 
data structure (Figure 2).

The figure depicts the architecture and 
workflow of the clustering model employed in the 
study. It outlines the application of k-fold cross-
validation to evaluate the stability of the clustering 
process on histopathological images. The diagram 
includes steps such as data partitioning, feature 
extraction, clustering execution, and validation 
across multiple folds. The model achieves an ARI 
of 1.0 across all folds, signifying perfect clustering 
stability. The visual representation provides 
insights into the model’s ability to uncover 
consistent and meaningful data structures.

RESULTS

The process involved loading contrast 
enhancement, creating a tissue mask, calculating 
tissue percentages, and generating a visualization 

showing good tissue coverage across all samples. 
The model achieved a high silhouette score 
and good cluster separation, and the study 
successfully obtained perfect clustering alignment 
with the original results, characterized by a high 
silhouette score, a low Davies-Bouldin score, 
balanced attention weights across views, and 
perfectly balanced cluster sizes.

The clustering analysis of the dataset, 
consisting of 756 samples, provides a robust 
understanding of the underlying structures. The 
visualization techniques, including PCA, t-SNE, 
and UMAP, illustrate the clustering dynamics. 
According to the clustering metrics, a Silhouette 
Score of 0.792 indicates strong separation 
between clusters, complemented by a high 
Calinski-Harabasz Score of 641.435 and a low 
Davies-Bouldin Score of 0.293, all of which point 
towards well-defined and distinct clusters. Cluster 
statistics further indicate that all clusters maintain 
a balanced size, with samples evenly distributed 
and consistent average distances and densities 
among them, demonstrating the stability and 
reliability of the clustering process.

Using the MCGAE embeddings, clustering 
quality metrics enhance the understanding of 
model performance, with higher silhouette 
scores (0.892) and a Calinski-Harabasz Index 
(2155.433) confirming effective clustering. The 
uniformity in attention weights across various 
views signals equitable contributions from 
different data dimensions. Furthermore, the 

Figure 2 - Model Architecture and Flow for K-Fold Cross-Validation in Clustering Analysis.



8 Braz Dent Sci 2026;﻿ 29﻿: e4803

Yadalam PK et al.
Multiview clustering with graph autoencoder for reconstructing histopathological images in oral cancer

Yadalam PK et al. Multiview clustering with graph autoencoder for 
reconstructing histopathological images in oral cancer

plot depicting the convergence of loss metrics 
over 100 training epochs illustrates a significant 
reduction in total and individual loss components, 
showcasing the model’s optimization and stability 
across the training process.

The model achieved an accuracy of 93.5%, 
an F1 score of 89.36%, and an average precision 
of 97.32%. Additionally, the model demonstrated 
a low mean squared error (MSE) of 0.02 and 
a high R2 score of 0.95, showcasing its strong 
predictive accuracy and ability to explain a 
significant proportion of the variance in the data. 
These metrics highlight the model’s reliability 

and effectiveness, particularly in maintaining 
a balance between precision and recall while 
minimizing prediction errors and maximizing 
explained variance. The clustering analysis 
effectively identifies compact clusters and achieves 
interpretability through advanced visualization 
and stability assessments, demonstrating the 
machine learning model’s potential for data 
analytics and decision-making.

To assess robustness, performance metrics 
were averaged across five cross-validation folds. 
The model’s average accuracy was 93.5% ± 1.2, 
its F1 score was 89.36% ± 1.7, and its precision 
was 97.32% ± 1.1. The silhouette score was 
0.892 ± 0.02, and the Calinski-Harabasz Index 
was 2155.43 ± 87.6, indicating that the clusters 
were stable and well-separated. The R2 score 
was 0.95 ± 0.01, and the mean squared error 
(MSE) was 0.020 ± 0.003. These low standard 
deviations across folds indicate that the model 
operates consistently, with minimal variation.

Figure 3 illustrates the dimensions of the 
dataset used in the study, specifically showing 
the size of the data as [768, 756, 3] along with its 
corresponding data type. The visualization provides 
insights into the structure of the data, highlighting 
its compatibility with the clustering and machine 
learning processes applied in the analysis.

Figure 4 presents an annotated visualization 
of tissue percentage calculations, specifically 
showing a tissue coverage of 71.5% derived from 
the VGG model. This highlights the efficacy of the 
preprocessing step in accurately segmenting and 
quantifying tissue regions in histopathological 
images, ensuring robust feature extraction and 
clustering.

Figure 3 - Dataset Dimensions and Data Type Representation. This 
figure illustrates the dimensions of the dataset used in the study, 
specifically showing the size of the data as (768, 756, 3) along 
with its corresponding data type. The visualization offers insights 
into the data’s structure, highlighting its compatibility with the 
clustering and machine learning processes used in the analysis.

Figure 4 - Tissue Percentage Annotation Using VGG. The figure presents an annotated visualization of tissue percentage calculations, 
specifically showing a tissue coverage of 71.5% derived from the VGG model. This highlights the efficacy of the preprocessing step in accurately 
segmenting and quantifying tissue regions in histopathological images, ensuring robust feature extraction and clustering.
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Figure 5 presents a grid of four plots that 
collectively showcase clustering analysis and 
evaluation using different visualization techniques 
and metrics.

PCA Visualization: This plot highlights 
Principal Component 1 (PC1) and Principal 
Component 2 (PC2) as significant contributors, 
accounting for 41.01% and 31.79% of the 
explained variance, respectively, with a total 
explained variance of 72.80%. Data points are 
colored by cluster membership, revealing some 
overlap, but the plot provides an overview of the 
dataset’s variance distribution.

t-SNE Visualization: The t-SNE plot 
emphasizes local structures with tightly grouped 
clusters, providing a more detailed view of cluster 
separability compared to PCA. The enhanced 
separation between data points suggests robust 
clustering.

UMAP Visualization: This plot offers a balance 
between global cluster distribution and local 
structure, displaying similar grouping patterns to 
the t-SNE visualization, with distinct clusters visible.

Silhouette Analysis: The silhouette plot 
displays the distribution of silhouette coefficients for 
each cluster, indicating the model’s effectiveness in 
clustering. It includes a red dotted line as a threshold 
for assessing cluster separation. Key metrics show: 
Silhouette Score: 0.792 (strong separation), 
Calinski-Harabasz Score: 641.435 (well-defined 
clusters), and Davies-Bouldin Score: 0.293 (good 
cluster separation). Overall, these results affirm 
the robustness of the model and highlight the 
dataset’s relationships. Cluster statistics show 
that Cluster 0 has 25 samples, with an average 
distance to the center of 1.217 and a density of 
1.685. Cluster 1 has a distance of 1.247 and a 
density of 1.731, while Cluster 2 has a distance 
of 1.195 and 1.657.

Figure 6 shows the Feature Correlation 
Heatmap and Cluster Statistics Summary. This 
Figure illustrates the Feature Correlation Heatmap, 
a visual representation of the relationships between 
variables in the dataset, along with summarized 
Cluster Statistics. The heatmap utilizes a color 
gradient that ranges from red (positive correlation) 
to blue (negative correlation). Indices (0 to 31) are 

Figure 5 - Clustering Analysis Grid: PCA, t-SNE, UMAP, and Silhouette Analysis, and shows the grid of four plots that collectively showcase 
clustering analysis and evaluation using different visualization techniques and metrics.
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displayed along both the x and y axes, representing 
features. Dark red diagonal elements indicate 
perfect positive correlations [self-correlation], 
while off-diagonal elements show a mix of 
positive and negative values, reflecting complex 
inter-feature relationships. This visualization 
is instrumental in evaluating multicollinearity, 
guiding feature selection, and understanding the 
underlying data structure.

Cluster Statistics Summary: Cluster 0 contains 
25 samples with an average distance to the center 
of 1.217 and a density of 1.685. Cluster 1 has a 
distance of 1.247 and a density of 1.731. Cluster 
2 has a distance of 1.195 and a density of 1.657. 
The clusters exhibit balanced sizes, consistent 
distances, and similar densities, indicating a 
well-formed clustering structure. These results 
highlight the success of the clustering process, 
achieving size balance, clear separation, and high 
density across clusters. Dimensionality reduction 
techniques further validate the clustering quality 
by demonstrating clear relationships between 
features and robust cluster formation.

Cluster profiles

Cluster 0 has 25 distinct features, Cluster 
1 has 19 unique features, Cluster 2 has 11 unique 
features, and Cluster 3 has 25 unique features. 

Each cluster’s top 5 distinctive features vary 
significantly, with the top 5 being 2.213, 2.276, 
2.2152, and 2.047 units.

Figure 7 shows the cluster Profiles and 
Insights from MCGAE Embeddings and View 
Attention Weights, which illustrate three distinct 
visualizations that provide a comprehensive 
understanding of clustering analysis using 
MCGAE embeddings.

MCGAE embeddings scatter plot:

This plot highlights the distribution of 
samples, with data points color-coded according 
to their cluster membership. Clusters are 
visually distinct, with data points of the same 
color closely grouped, while different colors 
represent separated clusters. This demonstrates 
the MCGAE’s effectiveness in reconstructive 
embeddings that capture the clustering structure.

Cluster profiles summary:

Cluster 0 contains 25 unique features, Cluster 
1 has 19, Cluster 2 has 11, and Cluster 3 contains 
25 unique features. Each cluster’s top five distinctive 
features exhibit significant variation, with values 
ranging from 2.047 to 2.276 units, highlighting the 
diverse characteristics of the clusters.

Figure 6 - Feature Correlation Heatmap and Cluster Statistics Summary. 
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View attention weights bar plot:

The bar plot illustrates uniform attention 
weights across views, with each view contributing 
approximately 0.30 to the overall clustering 
process. This balanced attention allocation 
indicates that all data views are equally important, 
enhancing the robustness and interpretability 
of the clustering results. These visualizations 
collectively demonstrate the MCGAE model’s 
capability to generate well-defined clusters, 
balanced contributions from data views, and 
unique feature profiles within each cluster.

Cluster sizes

The bar plot shows cluster sizes, each 
containing approximately 25 samples. The 
equal distribution across clusters suggests a 
well-balanced group, with no cluster being 
significantly larger or smaller than the others.

Figure 8 shows the evaluation of Clustering 
Quality and Metrics Using MCGAE Embeddings and 
displays a grid containing four sections that showcase 
various metrics and visualizations about a clustering 
analysis conducted using MCGAE [Multiview 
Contrastive Graph Autoencoder] embeddings.

Figure 7 - Cluster Profiles and Insights from MCGAE Embeddings and View Attention Weights. 

Figure 8 - Evaluation of Clustering Quality and Metrics Using MCGAE Embeddings.
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Clustering quality metrics:

The silhouette score of 0.892, the Calinski-
Harabasz Index of 2.155, and the Davies-Bouldin 
Index of 0.151 are reported as key metrics for 
assessing the quality of clustering.

These metrics suggest effective clustering 
performance, with the high silhouette score and 
Calinski-Harabasz Index indicating strong cluster 
cohesion and separation.

Attention weights of the clusters:

This section visualizes the attention weights 
across clusters, showcasing how the model 
allocates focus across different views. This helps 
to understand the contribution of each view to 
the overall clustering.

Cluster size distribution:

The bar plot demonstrates an even distribution 
of samples across clusters, with each cluster 
containing approximately 25 samples.

This indicates balanced group sizes, suggesting 
that the clustering approach did not favor any 
specific cluster, supporting the robustness of the 
model’s performance.

Clustering comparison metrics:

The comparison metrics reveal an optimal 
agreement score of 1.000, indicating that the 

clustering results perfectly match the true labels. 
This confirms the effectiveness of the MCGAE 
approach in accurately grouping samples.

Clustering visualizations

The MCGAE clustering plot shows clear 
cluster separations, demonstrating the algorithm’s 
effectiveness. The original clustering plot compares 
the clusters’ relation to the original data’s structure, 
demonstrating the effectiveness of the clustering 
algorithm. The clustering results demonstrate 
strong performance, with effective clustering 
evident in both metrics and visualizations. 
Balancing cluster sizes and attention weights 
suggests a well-balanced approach.

Figure 9 illustrates the epoch loss curve of 
the MCGAE model across 100 epochs. The plot 
showcases the convergence of different loss 
components, each represented by a distinct color. 
Total Loss (Blue): Displays a significant reduction 
from approximately 0.32 to 0.026, indicating 
overall convergence of the model and effective 
training progress.Reconstruction Loss (Orange): 
Shows a steady decline from approximately 
0.095 to 0.014, indicating improvements in the 
model’s reconstruction quality and its ability to 
reconstruct input data accurately. Clustering Loss 
(Green): Initially experiences a slight increase, 
followed by a steady decrease to approximately 
0.003. This indicates stable cluster assignments 
and a well-learned clustering representation. 

Figure 9 - Model Convergence Analysis: Epoch Loss Curve of the MCGAE Model.
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Contrastive Loss [Red]: Demonstrates the 
most substantial relative decrease, from about 
2.23 to 0.12, highlighting successful alignment of 
different views and the model’s effective learning 
of feature relationships. The model’s initial 
decline in the first 30 epochs, followed by gradual 
stabilization, demonstrates efficient learning, 
convergence, and consistent improvement in all 
loss components throughout the training process.

Figure 10 presents four plots illustrating the 
progression of different loss metrics over training 
epochs for a machine learning model. Total Loss 
(Top Left): Displays a steady decline over epochs, 
indicating overall performance improvement. The 
logarithmic plot shows higher initial values that 
decrease as training progresses, demonstrating 
successful optimization. Reconstruction Loss 
(Top Right): Shows a significant reduction in 
the initial epochs, with stabilization towards 
the end. This suggests that the model effectively 
learns to reconstruct input data over time, 
indicating strong performance. Clustering Loss 
(Bottom Left): Exhibits early erratic behavior, 
with a slight increase followed by a steady 
decrease after 40 epochs. This pattern suggests 
initial instability, which improves as training 

advances, highlighting enhanced model clustering 
capabilities. Contrastive Loss (Bottom Right): 
Demonstrates a consistent decrease across 
epochs, indicating improved differentiation 
between classes or instances. The sharp reduction 
in loss suggests that effective model adjustments 
are being made for improved learning.

Convergence analysis

The convergence analysis revealed a total 
loss reduction of 91.76%, a reconstruction loss 
reduction of 85.28%, a clustering loss reduction 
of 84.95%, and a contrastive loss reduction of 
94.61%. The study reveals strong convergence in 
all loss components over training epochs, with the 
highest reduction in contrastive Loss (94.61%). 
Overall model optimization and similar reduction 
rates were observed. The model demonstrates 
stable and consistent convergence across all 
components, with no signs of overfitting or 
instability during training.

Figure 11 illustrates a reconstructed image 
generated by the multiview clustering-based 
graph autoencoders. The image demonstrates 
the model’s ability to accurately reconstruct input 

Figure 10 - Training Epoch Analysis: Loss Metrics for the Machine Learning Model.
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data, reflecting the effectiveness of the learned 
representations from the clustering and feature 
extraction process. The visual highlights how well 
the model captures and reconstructs significant 
patterns within the data.

Explainable AI

Figure 12 presents a visualization illustrating 
feature importance and SHAP [Shapley Additive 
Explanations] interaction values for a machine 
learning model, highlighting the model’s 
interpretability and transparency.

Feature Importance: This section of the 
figure visualizes the importance of four features, 
with Feature 2 showing the highest importance 
and Feature 0 being the least significant. This 
helps in identifying which features contribute 
most to the model’s predictions.

SHAP Interaction Values: The SHAP interaction 
values capture the interactions between features, 
ranging from -0.02 to 0.025. These values help to 
uncover complex relationships and dependencies 
between features, supporting model interpretation 
and guiding feature selection. Notably, negative 

Figure 11 - The reconstructed image from Multiview Clustering-Based Graph Autoencoders illustrates a reconstructed image generated 
by the multiview clustering-based graph autoencoder. The image demonstrates the model’s ability to accurately reconstruct input data, 
reflecting the effectiveness of the learned representations from the clustering and feature extraction process. The reconstructed image 
preserves essential structural characteristics from the original input, demonstrating effective encoding and decoding, and reconstructs 
significant patterns within the data.

Figure 12 - Feature Importance and SHAP Interaction Values Visualization for Model Explainability presents a visualization that illustrates feature 
importance and SHAP interaction values for a machine learning model, thereby highlighting the model’s interpretability and transparency.
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interaction values between Feature 0 and Feature 
3 indicate a suppressive relationship.

Figure 13 illustrates key insights from the 
analysis of the model’s performance and feature 
contributions.

Top Five Significant Features: The most 
important features, measured by their contribution 
to the model’s output, are ranked at 0.0275, 
0.0280, 0.0290, 0.0320, and 0.0330. This indicates 
the features most critical for accurate predictions.

Cluster Stability: The cluster stability score 
yields a mean of 1.0000 with a standard deviation 
of 0.0000, indicating perfect consistency in 
cluster assignments across cross-validation folds, 
which reinforces the model’s robustness.

Attention Analysis: The analysis of attention 
weights across View 1, View 2, and View 3 
reveals that attention is nearly evenly distributed, 
indicating a balanced importance among the 
views in shaping the final representations. This 
confirms that the model equally prioritizes 
different perspectives, contributing to a well-
rounded and stable feature extraction.

DISCUSSION

Oral cancers, primarily squamous cell 
carcinomas, are the sixth most common malignancy 
worldwide, accounting for over 400,000 new cases 
annually, with a significant prevalence in Asia. These 
cancers have a poor prognosis and high diagnostic 

delays, underscoring the importance of prevention 
through education and lifestyle changes, alongside 
targeted screening for high-risk groups. A recent 
study employed a centered rule image-capturing 
approach to collect oral cavity images for cancer 
detection [1,23,24]. The HRNet deep learning 
network demonstrated high sensitivity, specificity, 
and precision in smartphone-based primary 
diagnosis. Similarly, an AI model for detecting oral 
cancer and dysplastic leukoplakia using single-lens 
reflex cameras exhibited high sensitivity, negative 
predictive value, and specificity [25].

In another study, a set of 1,000 synthetic 
hepatocellular carcinoma images was generated, 
evaluated by three radiologists, and scored 
0.64 for realism and consistency [21]. This 
demonstrates the feasibility of creating realistic 
MR images with minimal training data by utilizing 
available liver backgrounds. This approach 
aligns with our study’s findings, which show 
that histopathological images were generated 
with an accuracy of 93.5%. Moreover, a prior 
study employed CGGA, a graph autoencoder 
method, to generate omic-specific features, 
similarity, and consensus matrices for cancer 
subtyping. This method outperformed other 
clustering algorithms and multi-omics integrative 
approaches, identifying clinically relevant cancer 
subtypes. These results align with the present 
study, which utilized graph autoencoders for 
multi-clustering and histopathological image 
generation [6,22,26-28].

Figure 13 - Feature Significance, Cluster Stability, and Attention Analysis in MCGAE Embeddings.
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Another innovative framework, MSVGAE, 
was previously introduced for the analysis of 
scRNA-seq data. It utilized a variational graph 
autoencoder and graph attention networks to 
learn features at multiple scales, effectively 
handling uninformative data. The model captured 
complex posterior distributions and successfully 
mapped high-dimensional data into a low-
dimensional latent space [9]. Similarly, this 
study utilized contrast enhancement, tissue mask 
creation, and tissue percentage calculations to 
develop tissue masks. The results demonstrated 
excellent performance, achieving perfect 
clustering alignment and balanced attention 
weights across views. Analysis of 756 samples 
revealed strong separation between clusters, 
balanced cluster sizes, and stability. The model 
achieved 93.5% accuracy, an F1 score of 89.36%, 
and an average precision of 97.32%. Additionally, 
the model exhibited low MSE and a high R2 score, 
showcasing its predictive accuracy and its ability 
to explain significant data variance. These results 
highlight the machine learning model’s potential 
for advanced data analytics and decision-making.

This study has a few limitations. First, there 
were no baseline comparisons with standard 
clustering or dimensionality reduction techniques 
(e.g., K-means, PCA), making it impossible to 
compare performance directly. Second, statistical 
variability measures, such as mean ± SD, were 
not provided, and the loss weights were selected 
based on experience rather than through formal 
optimization. Additionally, the ARI and NMI 
metrics relied on artificial ground-truth labels 
from the dataset, which may not fully represent 
biological variability. The model was evaluated 
using a single curated dataset, and its applicability 
to real clinical situations has yet to be confirmed. 
Therefore, while the results are promising, 
further external validation and clinical studies 
are necessary to assess translational readiness.

Future directions for the MSVGAE model 
include diversifying datasets, incorporating 
longitudinal and clinical data, refining loss functions, 
enhancing visualization techniques, and building 
trust in clinical applications through the use of 
explainable AI. Expanding the dataset diversity 
and incorporating longitudinal samples will likely 
improve the model’s generalizability and robustness 
for oral cancer diagnostics [28-30]. Despite its 
strengths, the multiview graph autoencoder has 
limitations. Its performance is heavily dependent 
on high-quality data, and variations in staining 

protocols and imaging conditions can introduce 
biases. Scalability to larger datasets poses 
challenges due to the demands on computational 
resources. Furthermore, the model’s interpretability 
remains limited compared to traditional methods. 
The assumption of homogeneous clusters may 
not hold for all biological complexities, and its 
static clustering approach limits adaptability. 
Additionally, the exploration of hyperparameters 
remains underdeveloped.

CONCLUSIONS

Multiview graph autoencoders signify a 
promising avenue for advancing the analysis 
of histopathological images in oral cancer. This 
method combines different feature representations 
from various views, which can aid in clustering 
and image reconstruction. This could lead to better 
diagnostic workflows in the future. Our results 
demonstrate that this framework is technically 
feasible and performs well with a controlled dataset. 
We recognize, however, that additional validation 
is necessary before clinical implementation. This 
entails testing on larger, more diverse datasets, 
evaluating generalizability across various imaging 
platforms, and collaborating with pathologists to 
determine the diagnostic utility. This study lays the 
groundwork for future research in AI-driven digital 
pathology for oral cancer diagnostics, although it 
is not yet suitable for clinical application.
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