Analysis of flexural strength of composite resins polymerized by 2nd and 3rd generation leds
DOI:
https://doi.org/10.14295/bds.2015.v18i1.1073Abstract
Objective: This study aimed to investigate the mechanical properties of three composite resins using 2nd and 3rd generation LED-based light-curing devices. Material and Methods: Sixty specimens distributed according to the type of resin(Group Z350 - nanoparticle composite resin [Filtek Z350 / 3M ESPE]; Group AP - microhybrid composite Amelogen Plus/Ultradent; Group DF - Group composite resin Durafil l/Heraeus Kulzer), and the light-curing device(Group 2ndG - 2nd generation LED-based curing unit at power density of 500 mW / cm2; Group 3rdG - 3rd generation LED-based curing unit at power density of 1100 MW/cm2).The specimens were stored in a dark, dry container at 37 °C in an incubator for 24 h and submitted to the mini-flexural test on universal test machine (EMIC) to determine the elastic modulus and flexural strength using a three-point test.The data were submitted to two-way ANOVA (Resin Composite X LED) and Tukey test (5%).Results: Concerning to flexural strength (in MPa), ANOVA showed significant in Tukey test for the interaction between the factors: Group Z350/3rdG - 105.36a; Group AP/3rdG – 81.49ab; Group DF/3rdG – 66.43bc; Group AP/2ndG – 66.13bc; Group DF/2ndG: 60.61bc; Group Z350/2ndG: 47,19c. With regard to the modulus of elasticity (in GPa), the results obtained were: Factor resin composite - Group Z350 (8.85a) > Group AP (7.61b) > Group DF (1.94c); Factor LED - Group 3rdG (7.13a) > Group 2ndG (5.14b). Conclusion:It was concluded that the 3rd generation LED (1100 mw/cm2) significant increased the means of the flexural properties of composites. It was also concluded that the result of flexural properties of compositesdepends on the resin material tested.
Keywords: Composite resin; Flexural strength; Modulus of elasticity.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Brazilian Dental Science uses the Creative Commons (CC-BY 4.0) license, thus preserving the integrity of articles in an open access environment. The journal allows the author to retain publishing rights without restrictions.
=================
COPYRIGHT TRANSFER AND RESPONSIBILITY STATEMENT
(PDF)
For all articles published in the BDS journal, copyright is retained by the authors. Articles are licensed under an open-access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted, provided that the original published version is cited. These conditions allow for maximum use and exposure of the work while ensuring that the authors receive proper credit. All metadata associated with published articles is released under the Creative Commons CC0 Universal Public Domain Dedication.
Before the submission, authors must obtain permission to reproduce any published material (figures, schemes, tables, or any extract of a text) that does not fall into the public domain or for which they do not hold the copyright. Permission should be requested by the authors from the copyright holder (usually the Publisher, please refer to the imprint of the individual publications to identify the copyright holder).
The authors hereby attest that the study is original and does not present manipulated data, fraud, or plagiarism. All names listed made a significant scientific contribution to the study, are aware of the presented data, and agree with the final version of the manuscript. They assume complete responsibility for the ethical aspects of the study.
This text must be printed and signed by all authors. The scanned version should be submitted as supplemental file during the submission process.