Mechanical and thermal stress analysis of hybrid ceramic and lithium disilicate based ceramic CAD-CAM inlays using 3-D finite element analysis
DOI:
https://doi.org/10.14295/bds.2021.v24i3.2453Abstract
Objectives: The aim of this study was to analyze mechanical and thermal stresses of hybrid ceramic and lithium disilicate based ceramic of CAD/CAM inlays using 3D Finite element analysis. Material and Methods: A three dimensions finite element model of permanent maxillary premolar designed according to standard anatomy with class II cavity preparation for inlay restored with two different ceramic materials:- 1- Hybrid ceramic (Vita Enamic), 2- Lithium disilicate based ceramic (IPS e.max CAD). Totally six runs were performed on the model as: One loading case for each restorative material was tested in stress analysis; seven points of loading with 140N vertically applied at palatal cusp tip and cusp slop, marginal ridges and central fossa while the models base was fixed as a boundary condition in the two cases. Two thermal analysis cases were performed for each restoration material by applying 5ºC and 55ºC on the crown surface including the restoration surface. Results: The results of all structures were separated from the rest of the model to analyze the magnitude of stress in each component. For each group, maximum stresses on restorative materials, cement, enamel, and dentin were evaluated separately. Both ceramic materials generated similar stress distribution patterns for all groups when a total occlusal load of 140 N was applied. Conclusion: Thermal fluctuations of temperature have a great influence on the stresses induced on both restoration and tooth structure. IPS e.max CAD produced more favorable stresses on the tooth structure than Vita Enamic.
KEYWORDS
Ceramics; Finite element analysis; IPS e.max CAD; Lithium disilicate; Vita Enamic.
Downloads
Downloads
Published
Versions
- 2021-07-01 (3)
- 2021-07-01 (2)
How to Cite
Issue
Section
License
Brazilian Dental Science uses the Creative Commons (CC-BY 4.0) license, thus preserving the integrity of articles in an open access environment. The journal allows the author to retain publishing rights without restrictions.
=================
COPYRIGHT TRANSFER AND RESPONSIBILITY STATEMENT
(PDF)
For all articles published in the BDS journal, copyright is retained by the authors. Articles are licensed under an open-access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted, provided that the original published version is cited. These conditions allow for maximum use and exposure of the work while ensuring that the authors receive proper credit. All metadata associated with published articles is released under the Creative Commons CC0 Universal Public Domain Dedication.
Before the submission, authors must obtain permission to reproduce any published material (figures, schemes, tables, or any extract of a text) that does not fall into the public domain or for which they do not hold the copyright. Permission should be requested by the authors from the copyright holder (usually the Publisher, please refer to the imprint of the individual publications to identify the copyright holder).
The authors hereby attest that the study is original and does not present manipulated data, fraud, or plagiarism. All names listed made a significant scientific contribution to the study, are aware of the presented data, and agree with the final version of the manuscript. They assume complete responsibility for the ethical aspects of the study.
This text must be printed and signed by all authors. The scanned version should be submitted as supplemental file during the submission process.