Stress and strain distributions on short implants with two different prosthetic connections – an in vitro and in silico analysis
DOI:
https://doi.org/10.14295/bds.2017.v20i3.1433Abstract
Objective: An ideal biomechanics minimizes the stress between implant and bone that can provide success for osseointegrated implants. This study evaluated the strain concentration in surrounding tissue and stress in the components of two implants with different prosthetic connections through an in vitro and in silico methods. Methods: Twenty polyurethane blocks were divided into two groups (n=10) followed by the installation of internal hexagon (IH) (AS Technology – Titanium Fix, São José dos Campos, Brazil) or locking taper implants (LT) (Bicon Dental Implants). For strain gauge (SG) method, four sensors were placed around the implants. For finite element analysis (FEA), the same block was modeled and analyzed. An axial load (30 kgf) was applied for both methodologies. The values of stress and strain were analyzed for correlation to SG. Results: For SG, LT presented a mean of strain most aggressive (-932) than IH (-632). For FEA, LT showed less stress (-547) then IH (-1169). Conclusion: For two implant’s system, microstrain values capable to induce unwanted bone remodeling were not measured. However, for IH implant, the presence of a retention screw has the disadvantage to concentrate stress while a solid abutment dissipates the axial load through the implant that suggests a better performance for LT group.
Keywords: Finite elements analyses; Dental implant; Strain gauge.
Downloads
Additional Files
Published
Issue
Section
License
COPYRIGHT TRANSFER AND RESPONSIBILITY STATEMENT
(PDF)
For all articles published in the BDS journal, copyright is retained by the authors. Articles are licensed under an open-access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted, provided that the original published version is cited. These conditions allow for maximum use and exposure of the work while ensuring that the authors receive proper credit. All metadata associated with published articles is released under the Creative Commons CC0 Universal Public Domain Dedication.
Before the submission, authors must obtain permission to reproduce any published material (figures, schemes, tables, or any extract of a text) that does not fall into the public domain or for which they do not hold the copyright. Permission should be requested by the authors from the copyright holder (usually the Publisher, please refer to the imprint of the individual publications to identify the copyright holder).
The authors hereby attest that the study is original and does not present manipulated data, fraud, or plagiarism. All names listed made a significant scientific contribution to the study, are aware of the presented data, and agree with the final version of the manuscript. They assume complete responsibility for the ethical aspects of the study.
This text must be printed and signed by all authors. The scanned version should be submitted as supplemental file during the submission process.